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This open source computing framework 
unifies streaming, batch, and interactive big 
data workloads to unlock new applications. 
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THE GROWTH OF data volumes in industry and research 
poses tremendous opportunities, as well as tremendous 
computational challenges. As data sizes have outpaced 
the capabilities of single machines, users have needed 
new systems to scale out computations to multiple 
nodes. As a result, there has been an explosion of 
new cluster programming models targeting diverse 
computing workloads.1,4,7,10 At first, these models were 
relatively specialized, with new models developed for 
new workloads; for example, MapReduce4 supported 
batch processing, but Google also developed Dremel13 

for interactive SQL queries and Pregel11 
for iterative graph algorithms. In the 
open source Apache Hadoop stack, 
systems like Storm1 and Impala9 are 
also specialized. Even in the relational 
database world, the trend has been to 
move away from “one-size-fits-all” sys-
tems.18 Unfortunately, most big data 
applications need to combine many 
different processing types. The very 
nature of “big data” is that it is diverse 
and messy; a typical pipeline will need 
MapReduce-like code for data load-
ing, SQL-like queries, and iterative 
machine learning. Specialized engines 
can thus create both complexity and 
inefficiency; users must stitch together 
disparate systems, and some applica-
tions simply cannot be expressed effi-
ciently in any engine. 

In 2009, our group at the Univer-
sity of California, Berkeley, started 
the Apache Spark project to design 
a unified engine for distributed data 
processing. Spark has a programming 
model similar to MapReduce but ex-
tends it with a data-sharing abstrac-
tion called “Resilient Distributed Da-
tasets,” or RDDs.25 Using this simple 
extension, Spark can capture a wide 
range of processing workloads that 
previously needed separate engines, 
including SQL, streaming, machine 
learning, and graph processing2,26,6 
(see Figure 1). These implementations 
use the same optimizations as special-
ized engines (such as column-oriented 
processing and incremental updates) 
and achieve similar performance but 
run as libraries over a common en-
gine, making them easy and efficient 
to compose. Rather than being specific 
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˽˽ A simple programming model can 

capture streaming, batch, and interactive 
workloads and enable new applications 
that combine them. 

˽˽ Apache Spark applications range from 
finance to scientific data processing 
and combine libraries for SQL, machine 
learning, and graphs. 

˽˽ In six years, Apache Spark has  
grown to 1,000 contributors and 
thousands of deployments. 
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to these workloads, we claim this result 
is more general; when augmented with 
data sharing, MapReduce can emu-
late any distributed computation, so 
it should also be possible to run many 
other types of workloads.24 

Spark’s generality has several im-
portant benefits. First, applications 
are easier to develop because they use a 
unified API. Second, it is more efficient 
to combine processing tasks; whereas 
prior systems required writing the 
data to storage to pass it to another en-

gine, Spark can run diverse functions 
over the same data, often in memory. 
Finally, Spark enables new applica-
tions (such as interactive queries on a 
graph and streaming machine learn-
ing) that were not possible with previ-
ous systems. One powerful analogy for 
the value of unification is to compare 
smartphones to the separate portable 
devices that existed before them (such 
as cameras, cellphones, and GPS gad-
gets). In unifying the functions of these 
devices, smartphones enabled new 

applications that combine their func-
tions (such as video messaging and 
Waze) that would not have been pos-
sible on any one device. 

Since its release in 2010, Spark 
has grown to be the most active open 
source project or big data processing, 
with more than 1,000 contributors. The 
project is in use in more than 1,000 or-
ganizations, ranging from technology 
companies to banking, retail, biotech-
nology, and astronomy. The largest 
publicly announced deployment has 

Analyses performed using Spark of brain activity in a larval zebrafish: (left) matrix factorization to characterize functionally similar 
regions (as depicted by different colors) and (right) embedding dynamics of whole-brain activity into lower-dimensional trajectories. 
Source: Jeremy Freeman and Misha Ahrens, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA. 
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across a cluster that can be manipu-
lated in parallel. Users create RDDs by 
applying operations called “transfor-
mations” (such as map, filter, and 
groupBy) to their data. 

Spark exposes RDDs through a func-
tional programming API in Scala, Java, 
Python, and R, where users can simply 
pass local functions to run on the clus-
ter. For example, the following Scala 
code creates an RDD representing the 
error messages in a log file, by search-
ing for lines that start with ERROR, and 
then prints the total number of errors: 

lines = spark.textFile(“hdfs://...”) 

errors = lines.filter(

	s => s.startsWith(“ERROR”)) 

println(“Total errors: “ + errors.count())

The first line defines an RDD backed 
by a file in the Hadoop Distributed File 
System (HDFS) as a collection of lines of 
text. The second line calls the filter 
transformation to derive a new RDD 
from lines. Its argument is a Scala 
function literal or closure.a Finally, the 
last line calls count, another type of 
RDD operation called an “action” that 

a	 The closures passed to Spark can call into any 
existing Scala or Python library or even refer-
ence variables in the outer program. Spark 
sends read-only copies of these variables to 
worker nodes.

returns a result to the program (here, 
the number of elements in the RDD) 
instead of defining a new RDD. 

Spark evaluates RDDs lazily, al-
lowing it to find an efficient plan for 
the user’s computation. In particular, 
transformations return a new RDD ob-
ject representing the result of a compu-
tation but do not immediately compute 
it. When an action is called, Spark looks 
at the whole graph of transformations 
used to create an execution plan. For ex-
ample, if there were multiple filter or 
map operations in a row, Spark can fuse 
them into one pass, or, if it knows that 
data is partitioned, it can avoid moving 
it over the network for groupBy.5 Users 
can thus build up programs modularly 
without losing performance. 

Finally, RDDs provide explicit sup-
port for data sharing among compu-
tations. By default, RDDs are “ephem-
eral” in that they get recomputed each 
time they are used in an action (such 
as count). However, users can also 
persist selected RDDs in memory or 
for rapid reuse. (If the data does not 
fit in memory, Spark will also spill it 
to disk.) For example, a user searching 
through a large set of log files in HDFS 
to debug a problem might load just the 
error messages into memory across the 
cluster by calling 

errors.persist() 

After this, the user can run a variety of 
queries on the in-memory data: 

// Count errors mentioning MySQL 

errors.filter(s => s.contains(“MySQL”)) 

  .count() 

// Fetch back the time fields of errors that 

// mention PHP, assuming time is field #3: 

errors.filter(s => s.contains(“PHP”)) 

  .map(line => line.split(‘\t’)(3)) 

  .collect()  

This data sharing is the main differ-
ence between Spark and previous com-
puting models like MapReduce; other-
wise, the individual operations (such 
as map and groupBy) are similar. Data 
sharing provides large speedups, often 
as much as 100×, for interactive que-
ries and iterative algorithms.23 It is also 
the key to Spark’s generality, as we dis-
cuss later. 

Fault tolerance. Apart from provid-
ing data sharing and a variety of paral-

more than 8,000 nodes.22 As Spark has 
grown, we have sought to keep building 
on its strength as a unified engine. We 
(and others) have continued to build an 
integrated standard library over Spark, 
with functions from data import to ma-
chine learning. Users find this ability 
powerful; in surveys, we find the major-
ity of users combine multiple of Spark’s 
libraries in their applications.

As parallel data processing becomes 
common, the composability of process-
ing functions will be one of the most 
important concerns for both usability 
and performance. Much of data analy-
sis is exploratory, with users wishing to 
combine library functions quickly into 
a working pipeline. However, for “big 
data” in particular, copying data be-
tween different systems is anathema to 
performance. Users thus need abstrac-
tions that are general and composable. 
In this article, we introduce the Spark 
programming model and explain why it 
is highly general. We also discuss how 
we leveraged this generality to build 
other processing tasks over it. Finally, 
we summarize Spark’s most common 
applications and describe ongoing de-
velopment work in the project. 

Programming Model 
The key programming abstraction in 
Spark is RDDs, which are fault-toler-
ant collections of objects partitioned 

Figure 1. Apache Spark software stack, with specialized processing libraries implemented 
over the core engine. 

SQLStreaming ML Graph



NOVEMBER 2016  |   VOL.  59  |   NO.  11  |   COMMUNICATIONS OF THE ACM     59

contributed articles

lel operations, RDDs also automatical-
ly recover from failures. Traditionally, 
distributed computing systems have 
provided fault tolerance through data 
replication or checkpointing. Spark 
uses a different approach called “lin-
eage.”25 Each RDD tracks the graph of 
transformations that was used to build 
it and reruns these operations on base 
data to reconstruct any lost partitions. 
For example, Figure 2 shows the RDDs in 
our previous query, where we obtain the 
time fields of errors mentioning PHP by 
applying two filters and a map. If any 
partition of an RDD is lost (for example, 
if a node holding an in-memory partition 
of errors fails), Spark will rebuild it by 
applying the filter on the corresponding 
block of the HDFS file. For “shuffle” op-
erations that send data from all nodes to 
all other nodes (such as reduceByKey), 
senders persist their output data locally 
in case a receiver fails. 

Lineage-based recovery is signifi-
cantly more efficient than replication 
in data-intensive workloads. It saves 
both time, because writing data over 
the network is much slower than writ-
ing it to RAM, and storage space in 
memory. Recovery is typically much 
faster than simply rerunning the pro-
gram, because a failed node usually 
contains multiple RDD partitions, and 
these partitions can be rebuilt in paral-
lel on other nodes. 

A longer example. As a longer exam-
ple, Figure 3 shows an implementa-
tion of logistic regression in Spark. 
It uses batch gradient descent, a 
simple iterative algorithm that 
computes a gradient function over 
the data repeatedly as a parallel 
sum. Spark makes it easy to load the 
data into RAM once and run multiple 
sums. As a result, it runs faster than 
traditional MapReduce. For example, 
in a 100GB job (see Figure 4), MapRe-
duce takes 110 seconds per iteration 
because each iteration loads the data 
from disk, while Spark takes only one 
second per iteration after the first load. 

Integration with storage systems. 
Much like Google’s MapReduce, 
Spark is designed to be used with 
multiple external systems for per-
sistent storage. Spark is most com-
monly used with cluster file systems 
like HDFS and key-value stores like 
S3 and Cassandra. It can also connect 
with Apache Hive as a data catalog. 

SQL and DataFrames. One of the 
most common data processing para-
digms is relational queries. Spark SQL2 
and its predecessor, Shark,23 imple-
ment such queries on Spark, using 
techniques similar to analytical da-
tabases. For example, these systems 
support columnar storage, cost-based 
optimization, and code generation for 
query execution. The main idea behind 
these systems is to use the same data 
layout as analytical databases—com-
pressed columnar storage—inside 
RDDs. In Spark SQL, each record in an 
RDD holds a series of rows stored in bi-
nary format, and the system generates 

RDDs usually store only temporary 
data within an application, though 
some applications (such as the Spark 
SQL JDBC server) also share RDDs 
across multiple users.2 Spark’s de-
sign as a storage-system-agnostic 
engine makes it easy for users to run 
computations against existing data 
and join diverse data sources. 

Higher-Level Libraries 
The RDD programming model pro-
vides only distributed collections of 
objects and functions to run on them. 
Using RDDs, however, we have built 
a variety of higher-level libraries on 
Spark, targeting many of the use cas-
es of specialized computing engines. 
The key idea is that if we control the 
data structures stored inside RDDs, 
the partitioning of data across nodes, 
and the functions run on them, we can 
implement many of the execution tech-
niques in other engines. Indeed, as we 
show in this section, these libraries 
often achieve state-of-the-art perfor-
mance on each task while offering sig-
nificant benefits when users combine 
them. We now discuss the four main 
libraries included with Apache Spark. 

Figure 2. Lineage graph for the third query 
in our example; boxes represent RDDs, and 
arrows represent transformations. 
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filter(line.startsWith(“ERROR”))

filter(line.contains(“PHP”)))

map(line.split(‘\t’)(3)) 

time fields

Figure 3. A Scala implementation of logistic regression via batch gradient descent in Spark. 

// Load data into an RDD 
val points = sc.textFile(...).map(readPoint).persist() 

// Start with a random parameter vector 
var w = DenseVector.random(D) 

// On each iteration, update param vector with a sum 
for (i <- 1 to ITERATIONS) { 
  val gradient = points.map { p => 
    p.x * (1/(1+exp(-p.y*(w.dot(p.x))))-1) * p.y 
  }.reduce((a, b) => a+b) 
  w -= gradient 
}

Figure 4. Performance of logistic regression in Hadoop MapReduce vs. Spark for 100GB of 
data on 50 m2.4xlarge EC2 nodes.

0 

500 

1,000 

1,500 

2,000 

2,500 

1 5 10 20 

R
u

n
n

in
g

 T
im

e 
(s

) 

Number of Iterations 

Spark Hadoop



60    COMMUNICATIONS OF THE ACM    |   NOVEMBER 2016  |   VOL.  59  |   NO.  11

contributed articles

means model) are easily passed to oth-
er libraries. Apart from compatibility 
at the API level, composition in Spark 
is also efficient at the execution level, 
because Spark can optimize across pro-
cessing libraries. For example, if one li-
brary runs a map function and the next 
library runs a map on its result, Spark 
will fuse these operations into a single 
map. Likewise, Spark’s fault recovery 
works seamlessly across these librar-
ies, recomputing lost data no matter 
which libraries produced it. 

Performance. Given that these librar-
ies run over the same engine, do they 
lose performance? We found that by 
implementing the optimizations we 
just outlined within RDDs, we can often 
match the performance of specialized 
engines. For example, Figure 6 com-
pares Spark’s performance on three 
simple tasks—a SQL query, stream-
ing word count, and Alternating Least 
Squares matrix factorization—versus 
other engines. While the results vary 
across workloads, Spark is generally 
comparable with specialized systems 
like Storm, GraphLab, and Impala.b For 
stream processing, although we show 
results from a distributed implementa-
tion on Storm, the per-node through-
put is also comparable to commercial 
streaming engines like Oracle CEP.26 

Even in highly competitive bench-
marks, we have achieved state-of-the-
art performance using Apache Spark. 
In 2014, we entered the Daytona Gray-
Sort benchmark (http://sortbench-
mark.org/) involving sorting 100TB of 
data on disk, and tied for a new record 
with a specialized system built only 
for sorting on a similar number of ma-
chines. As in the other examples, this 
was possible because we could imple-
ment both the communication and 
CPU optimizations necessary for large-
scale sorting inside the RDD model. 

Applications 
Apache Spark is used in a wide range 
of applications. Our surveys of Spark 

b	 One area in which other designs have outper-
formed Spark is certain graph computations.12,16 
However, these results are for algorithms with 
low ratios of computation to communication 
(such as PageRank) where the latency from syn-
chronized communication in Spark is signifi-
cant. In applications with more computation 
(such as the ALS algorithm) distributing the ap-
plication on Spark still helps.

code to run directly against this layout. 
Beyond running SQL queries, 

we have used the Spark SQL engine 
to provide a higher-level abstrac-
tion for basic data transformations 
called DataFrames,2 which are RDDs 
of records with a known schema. 
DataFrames are a common abstraction 
for tabular data in R and Python, with 
programmatic methods for filtering, 
computing new columns, and aggrega-
tion. In Spark, these operations map 
down to the Spark SQL engine and re-
ceive all its optimizations. We discuss 
DataFrames more later. 

One technique not yet implemented 
in Spark SQL is indexing, though other 
libraries over Spark (such as Indexe-
dRDDs3) do use it. 

Spark Streaming. Spark Streaming26 
implements incremental stream pro-
cessing using a model called “discretized 
streams.” To implement streaming over 
Spark, we split the input data into small 
batches (such as every 200 milliseconds) 
that we regularly combine with state 
stored inside RDDs to produce new re-
sults. Running streaming computations 
this way has several benefits over tradi-
tional distributed streaming systems. 
For example, fault recovery is less expen-
sive due to using lineage, and it is pos-
sible to combine streaming with batch 
and interactive queries. 

GraphX. GraphX6 provides a graph 
computation interface similar to Pregel 
and GraphLab,10,11 implementing the 
same placement optimizations as these 
systems (such as vertex partitioning 
schemes) through its choice of parti-
tioning function for the RDDs it builds. 

MLlib. MLlib,14 Spark’s machine 
learning library, implements more 
than 50 common algorithms for dis-
tributed model training. For example, it 
includes the common distributed algo-
rithms of decision trees (PLANET), La-
tent Dirichlet Allocation, and Alternat-
ing Least Squares matrix factorization. 

Combining processing tasks. Spark’s 
libraries all operate on RDDs as the 
data abstraction, making them easy to 
combine in applications. For example, 
Figure 5 shows a program that reads 
some historical Twitter data using 
Spark SQL, trains a K-means clustering 
model using MLlib, and then applies 
the model to a new stream of tweets. 
The data tasks returned by each library 
(here the historic tweet RDD and the K-

Spark has a similar 
programming 
model to 
MapReduce but 
extends it with 
a data-sharing 
abstraction 
called “resilient 
distributed 
datasets,” or RDDs.
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users have identified more than 1,000 
companies using Spark, in areas from 
Web services to biotechnology to fi-
nance. In academia, we have also seen 
applications in several scientific do-
mains. Across these workloads, we find 
users take advantage of Spark’s gener-
ality and often combine multiple of its 
libraries. Here, we cover a few top use 
cases. Presentations on many use cases 
are also available on the Spark Summit 
conference website (http://www.spark-
summit.org). 

Batch processing. Spark’s most com-
mon applications are for batch proc-
essing on large datasets, including 
Extract-Transform-Load workloads to 
convert data from a raw format (such 
as log files) to a more structured for-
mat and offline training of machine 
learning models. Published examples 
of these workloads include page per-
sonalization and recommendation at 
Yahoo!; managing a data lake at Gold-
man Sachs; graph mining at Alibaba; 
financial Value at Risk calculation; and 
text mining of customer feedback at 
Toyota. The largest published use case 
we are aware of is an 8,000-node cluster 
at Chinese social network Tencent that 
ingests 1PB of data per day.22 

While Spark can process data in 
memory, many of the applications in 
this category run only on disk. In such 
cases, Spark can still improve perfor-
mance over MapReduce due to its sup-
port for more complex operator graphs. 

Interactive queries. Interactive use of 
Spark falls into three main classes. First, 
organizations use Spark SQL for rela-
tional queries, often through business-
intelligence tools like Tableau. Examples 
include eBay and Baidu. Second, devel-
opers and data scientists can use Spark’s 
Scala, Python, and R interfaces interac-
tively through shells or visual notebook 
environments. Such interactive use is 
crucial for asking more advanced ques-
tions and for designing models that 
eventually lead to production applica-
tions and is common in all deployments. 
Third, several vendors have developed 
domain-specific interactive applications 
that run on Spark. Examples include 
Tresata (anti-money laundering), Tri-
facta (data cleaning), and PanTera (large-
scale visualization, as in Figure 7). 

Stream processing. Real-time proc-
essing is also a popular use case, both 
in analytics and in real-time decision-

streaming with batch and interactive 
queries. For example, video company 
Conviva uses Spark to continuously 
maintain a model of content distribu-
tion server performance, querying it 
automatically when it moves clients 

making applications. Published use 
cases for Spark Streaming include 
network security monitoring at Cis-
co, prescriptive analytics at Samsung 
SDS, and log mining at Netflix. Many 
of these applications also combine 

Figure 7. PanTera, a visualization application built on Spark that can interactively filter data.  

Source: PanTera

Figure 5. Example combining the SQL, machine learning, and streaming libraries in Spark. 

// Load historical data as an RDD using Spark SQL
val trainingData = sql( 
   “SELECT location, language FROM old_tweets”) 

// Train a K-means model using MLlib 
val model = new KMeans() 
   .setFeaturesCol(“location”) 
   .setPredictionCol(“language”) 
   .fit(trainingData) 
// Apply the model to new tweets in a stream 
TwitterUtils.createStream(...) 
      .map(tweet => model.predict(tweet.location)) 

Figure 6. Comparing Spark’s performance with several widely used specialized systems 
for SQL, streaming, and machine learning. Data is from Zaharia24 (SQL query and stream-
ing word count) and Sparks et al.17 (alternating least squares matrix factorization). 
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queries during live experiments. Figure 
8 shows an example image generated 
using Spark. 

Spark components used. Because 
Spark is a unified data-processing en-
gine, the natural question is how many 
of its libraries organizations actually 
use. Our surveys of Spark users have 
shown that organizations do, indeed, 
use multiple components, with over 
60% of organizations using at least 
three of Spark’s APIs. Figure 9 out-
lines the usage of each component in 
a July 2015 Spark survey by Databricks 
that reached 1,400 respondents. We 
list the Spark Core API (just RDDs) 
as one component and the higher-
level libraries as others. We see that 
many components are widely used, 
with Spark Core and SQL as the most 
popular. Streaming is used in 46% of 
organizations and machine learning 
in 54%. While not shown directly in 

Figure 9, most organizations use mul-
tiple components; 88% use at least two 
of them, 60% use at least three (such 
as Spark Core and two libraries), and 
27% use at least four components. 

Deployment environments. We also 
see growing diversity in where Apache 
Spark applications run and what data 
sources they connect to. While the first 
Spark deployments were generally in 
Hadoop environments, only 40% of de-
ployments in our July 2015 Spark sur-
vey were on the Hadoop YARN cluster 
manager. In addition, 52% of respon-
dents ran Spark on a public cloud. 

Why Is the Spark Model General? 
While Apache Spark demonstrates 
that a unified cluster programming 
model is both feasible and useful, it 
would be helpful to understand what 
makes cluster programming models 
general, along with Spark’s limita-
tions. Here, we summarize a discus-
sion on the generality of RDDs from 
Zaharia.24 We study RDDs from two 
perspectives. First, from an expres-
siveness point of view, we argue that 
RDDs can emulate any distributed 
computation, and will do so efficient-
ly in many cases unless the computa-
tion is sensitive to network latency. 
Second, from a systems point of view, 
we show that RDDs give applications 
control over the most common bottle-
neck resources in clusters—network and 
storage I/O—and thus make it possible 
to express the same optimizations 
for these resources that characterize 
specialized systems. 

Expressiveness perspective. To study the 
expressiveness of RDDs, we start by com-
paring RDDs to the MapReduce model, 
which RDDs build on. The first question 
is what computations can MapReduce 
itself express? Although there have been 
numerous discussions about the limita-
tions of MapReduce, the surprising an-
swer here is that MapReduce can emu-
late any distributed computation. 

To see this, note that any distributed 
computation consists of nodes that per-
form local computation and occasionally 
exchange messages. MapReduce offers 
the map operation, which allows local 
computation, and reduce, which allows 
all-to-all communication. Any distrib-
uted computation can thus be emulated, 
perhaps somewhat inefficiently, by 
breaking down its work into timesteps, 

across servers, in an application that 
requires substantial parallel work for 
both model maintenance and queries. 

Scientific applications. Spark has also 
been used in several scientific domains, 
including large-scale spam detection,19 
image processing,27 and genomic data 
processing.15 One example that com-
bines batch, interactive, and stream 
processing is the Thunder platform 
for neuroscience at Howard Hughes 
Medical Institute, Janelia Farm.5 It is 
designed to process brain-imaging data 
from experiments in real time, scaling 
up to 1TB/hour of whole-brain imaging 
data from organisms (such as zebrafish 
and mice). Using Thunder, researchers 
can apply machine learning algorithms 
(such as clustering and Principal Com-
ponent Analysis) to identify neurons in-
volved in specific behaviors. The same 
code can be run in batch jobs on data 
from previous runs or in interactive 

Figure 9. Percent of organizations using each Spark component, from the Databricks 2015 
Spark survey; https://databricks.com/blog/2015/09/24/. 
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Figure 8. Visualization of neurons in the zebrafish brain created with Spark, where each 
neuron is colored based on the direction of movement that correlates with its activity. 
Source: Jeremy Freeman and Misha Ahrens of Janelia Research Campus. 
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running maps to perform the local 
computation in each timestep, and 
batching and exchanging messages at 
the end of each step using a reduce. A 
series of MapReduce steps will capture 
the whole result, as in Figure 10. Re-
cent theoretical work has formalized 
this type of emulation by showing that 
MapReduce can simulate many com-
putations in the Parallel Random Ac-
cess Machine model.8 Repeated Map-
Reduce is also equivalent to the Bulk 
Synchronous Parallel model.20 

While this line of work shows that 
MapReduce can emulate arbitrary 
computations, two problems can 
make the “constant factor” behind 
this emulation high. First, MapReduce 
is inefficient at sharing data across 
timesteps because it relies on repli-
cated external storage systems for this 
purpose. Our emulated system may 
thus become slower due to writing 
out its state after each step. Second, 
the latency of the MapReduce steps 
determines how well our emulation 
will match a real network, and most 
Map-Reduce implementations were 
designed for batch environments with 
minutes to hours of latency. 

RDDs and Spark address both of 
these limitations. On the data-sharing 
front, RDDs make data sharing fast by 
avoiding replication of intermediate data 
and can closely emulate the in-memory 
“data sharing” across time that would 
happen in a system composed of long-
running processes. On the latency front, 
Spark can run MapReduce-like steps 
on large clusters with 100ms latency; 
nothing intrinsic to the MapReduce model 
prevents this. While some applications 
need finer-grain timesteps and commu-
nication, this 100ms latency is enough 
to implement many data-intensive 
workloads, where the amount of com-
putation that can be batched before a 
communication step is high. 

In summary, RDDs build on Map-
Reduce’s ability to emulate any dis-
tributed computation but make this 
emulation significantly more efficient. 
Their main limitation is increased 
latency due to synchronization in each 
communication step, but this latency 
is often not a factor. 

Systems perspective. Independent 
of the emulation approach to char-
acterizing Spark’s generality, we can 
take a systems approach. What are the 

Links. Each node has a 10Gbps 
(1.3GB/s) link, or approximately 40× 
less than its memory bandwidth and 
2× less than its aggregate disk band-
width; and 

Racks. Nodes are organized into racks 
of 20 to 40 machines, with 40Gbps–
80Gbps bandwidth out of each rack, 
or 2×–5× lower than the in-rack net-
work performance. 

Given these properties, the most 
important performance concern in 
many applications is the placement of 
data and computation in the network. 
Fortunately, RDDs provide the facili-

bottleneck resources in cluster com-
putations? And can RDDs use them ef-
ficiently? Although cluster applications 
are diverse, they are all bound by the 
same properties of the underlying hard-
ware. Current datacenters have a steep 
storage hierarchy that limits most ap-
plications in similar ways. For example, 
a typical Hadoop cluster might have the 
following characteristics: 

Local storage. Each node has local 
memory with approximately 50GB/s 
of bandwidth, as well as 10 to 20 lo-
cal disks, for approximately 1GB/s to 
2GB/s of disk bandwidth; 

Figure 11. Example of Spark’s DataFrame API in Python. Unlike Spark’s core API, DataFrames 
have a schema with named columns (such as age and city) and take expressions in a limited 
language (such as age > 20) instead of arbitrary Python functions. 

users.where(users[“age”] > 20) 
        .groupBy(“city”) 
        .agg(avg(“age”), max(“income”)) 

Figure 12. Working with DataFrames in Spark’s R API. We load a distributed DataFrame 
using Spark’s JSON data source, then filter and aggregate using standard R column ex-
pressions. 

people <- read.df(context, “./people.json”, “json”) 

# Filter people by age 
adults = filter(people, people$age > 20) 

# Count number of people by country 
summarize(groupBy(adults, adults$city), count=n(adults$id)) 
##	 city		  count
##1	 Cambridge	 1
##2	 San Francisco	 6
##3	 Berkeley	4

Figure 10. Emulating an arbitrary distributed computation with MapReduce. 

map 

reduce 

. . . 

(a) MapReduce provides primitives  
for local computation and all-to-all 
communication.

(b) By chaining these steps together,  
we can emulate any distributed 
computation. The main costs for this 
emulation are the latency of the rounds 
and the overhead of passing state 
across steps. 
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ity in new libraries. More than 200 third-
party packages are also available.c In the 
research community, multiple projects 
at Berkeley, MIT, and Stanford build on 
Spark, and many new libraries (such 
as GraphX and Spark Streaming) came 
from research groups. Here, we sketch 
four of the major efforts. 

DataFrames and more declarative 
APIs. The core Spark API was based on 
functional programming over distrib-
uted collections that contain arbitrary 
types of Scala, Java, or Python objects. 
While this approach was highly ex-
pressive, it also made programs more 
difficult to automatically analyze and 
optimize. The Scala/Java/Python ob-
jects stored in RDDs could have com-
plex structure, and the functions run 
over them could include arbitrary 
code. In many applications, develop-
ers could get suboptimal performance 
if they did not use the right operators; 
for example, the system on its own 
could not push filter functions 
ahead of maps. 

To address this problem, we extend-
ed Spark in 2015 to add a more declara-
tive API called DataFrames2 based on 
the relational algebra. Data frames are 
a common API for tabular data in Py-
thon and R. A data frame is a set of re-
cords with a known schema, essentially 
equivalent to a database table, that 
supports operations like filtering 
and aggregation using a restricted 
“expression” API. Unlike working in 
the SQL language, however, data frame 
operations are invoked as function 
calls in a more general programming 
language (such as Python and R), al-
lowing developers to easily structure 
their program using abstractions in the 
host language (such as functions and 
classes). Figure 11 and Figure 12 show 
examples of the API. 

Spark’s DataFrames offer a similar 
API to single-node packages but auto-
matically parallelize and optimize the 
computation using Spark SQL’s query 
planner. User code thus receives op-
timizations (such as predicate push-
down, operator reordering, and join 
algorithm selection) that were not 
available under Spark’s functional API. 
To our knowledge, Spark DataFrames 
are the first library to perform such 

c	 One package index is available at https://
spark-packages.org/

relational optimizations under a data 
frame API.d 

While DataFrames are still new, 
they have quickly become a popular 
API. In our July 2015 survey, 60% of 
respondents reported using them. Be-
cause of the success of DataFrames, 
we have also developed a type-safe in-
terface over them called Datasetse that 
lets Java and Scala programmers view 
DataFrames as statically typed col-
lections of Java objects, similar to the 
RDD API, and still receive relational 
optimizations. We expect these APIs 
to gradually become the standard ab-
straction for passing data between 
Spark libraries. 

Performance optimizations. Much of 
the recent work in Spark has been on per-
formance. In 2014, the Databricks team 
spent considerable effort to optimize 
Spark’s network and I/O primitives, al-
lowing Spark to jointly set a new record 
for the Daytona GraySort challenge.f 
Spark sorted 100TB of data 3× faster 
than the previous record holder based 
on Hadoop MapReduce using 10× few-
er machines. This benchmark was not 
executed in memory but rather on (solid-
state) disks. In 2015, one major effort was 
Project Tungsten,g which removes Java 
Virtual Machine overhead from many of 
Spark’s code paths by using code genera-
tion and non-garbage-collected memory. 
One benefit of doing these optimizations 
in a general engine is that they simulta-
neously affect all of Spark’s libraries; 
machine learning, streaming, and SQL 
all became faster from each change. 

R language support. The SparkR 
project21 was merged into Spark in 
2015 to provide a programming inter-
face in R. The R interface is based on 
DataFrames and uses almost identical 
syntax to R’s built-in data frames. Oth-
er Spark libraries (such as MLlib) are 
also easy to call from R, because they 
accept DataFrames as input. 

Research libraries. Apache Spark 
continues to be used to build higher-

d	 One reason optimization is possible is that 
Spark’s DataFrame API uses lazy evaluation 
where the content of a DataFrame is not com-
puted until the user asks to write it out. The 
data frame APIs in R and Python are eager, pre-
venting optimizations like operator reordering.

e	 https://databricks.com/blog/2016/01/04/in-
troducing-spark-datasets.html

f	 http://sortbenchmark.org/ApacheSpark2014.pdf
g	 https://databricks.com/blog/2015/04/28/

ties to control this placement; the in-
terface lets applications place com-
putations near input data (through 
an API for “preferred locations” for 
input sources25), and RDDs provide 
control over data partitioning and co-
location (such as specifying that data 
be hashed by a given key). Libraries 
(such as GraphX) can thus implement 
the same placement strategies used in 
specialized systems.6 

Beyond network and I/O bandwidth, 
the most common bottleneck tends to be 
CPU time, especially if data is in memo-
ry. In this case, however, Spark can run 
the same algorithms and libraries used 
in specialized systems on each node. For 
example, it uses columnar storage and 
processing in Spark SQL, native BLAS 
libraries in MLlib, and so on. As we 
discussed earlier, the only area where 
RDDs clearly add a cost is network la-
tency, due to the synchronization at 
parallel communication steps. 

One final observation from a systems 
perspective is that Spark may incur extra 
costs over some of today’s special-
ized systems due to fault tolerance. 
For example, in Spark, the map tasks 
in each shuffle operation save their 
output to local files on the machine 
where they ran, so reduce tasks can re-
fetch it later. In addition, Spark imple-
ments a barrier at shuffle stages, so the 
reduce tasks do not start until all the 
maps have finished. This avoids some 
of the complexity that would be needed 
for fault recovery if one “pushed” re-
cords directly from maps to reduces in 
a pipelined fashion. Although removing 
some of these features would speed 
up the system, Spark often performs 
competitively despite them. The main 
reason is an argument similar to our 
previous one: many applications are 
bound by an I/O operation (such as 
shuffling data across the network or 
reading it from disk) and beyond this 
operation, optimizations (such as 
pipelining) add only a modest benefit. 
We have kept fault tolerance “on” by 
default in Spark to make it easy to reason 
about applications. 

Ongoing Work 
Apache Spark remains a rapidly evolv-
ing project, with contributions from 
both industry and research. The code-
base size has grown by a factor of six 
since June 2013, with most of the activ-
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level data processing libraries. Recent 
projects include Thunder for neurosci-
ence,5 ADAM for genomics,15 and Kira 
for image processing in astronomy.27 
Other research libraries (such as 
GraphX) have been merged into the 
main codebase. 

Conclusion 
Scalable data processing will be es-
sential for the next generation of 
computer applications but typically 
involves a complex sequence of pro-
cessing steps with different com-
puting systems. To simplify this 
task, the Spark project introduced 
a unified programming model and 
engine for big data applications. Our 
experience shows such a model can 
efficiently support today’s workloads 
and brings substantial benefits to users. 
We hope Apache Spark highlights the 
importance of composability in pro-
gramming libraries for big data and 
encourages development of more eas-
ily interoperable libraries. 

All Apache Spark libraries described 
in this article are open source at http://
spark.apache.org/. Databricks has 
also made videos of all Spark Summit 
conference talks available for free at 
https://spark-summit.org/. 
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