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ABSTRACT
MapReduce and Spark are two very popular open source cluster
computing frameworks for large scale data analytics. These frame-
works hide the complexity of task parallelism and fault-tolerance,
by exposing a simple programming API to users. In this paper,
we evaluate the major architectural components in MapReduce and
Spark frameworks including: shuffle, execution model, and caching,
by using a set of important analytic workloads. To conduct a de-
tailed analysis, we developed two profiling tools: (1) We corre-
late the task execution plan with the resource utilization for both
MapReduce and Spark, and visually present this correlation; (2)
We provide a break-down of the task execution time for in-depth
analysis. Through detailed experiments, we quantify the perfor-
mance differences between MapReduce and Spark. Furthermore,
we attribute these performance differences to different components
which are architected differently in the two frameworks. We fur-
ther expose the source of these performance differences by using
a set of micro-benchmark experiments. Overall, our experiments
show that Spark is about 2.5x, 5x, and 5x faster than MapReduce,
for Word Count, k-means, and PageRank, respectively. The main
causes of these speedups are the efficiency of the hash-based aggre-
gation component for combine, as well as reduced CPU and disk
overheads due to RDD caching in Spark. An exception to this is
the Sort workload, for which MapReduce is 2x faster than Spark.
We show that MapReduce’s execution model is more efficient for
shuffling data than Spark, thus making Sort run faster on MapRe-
duce.

1. INTRODUCTION
In the past decade, open source analytic software running on

commodity hardware made it easier to run jobs which previously
used to be complex and tedious to run. Examples include: text
analytics, log analytics, and SQL like query processing, running
at a very large scale. The two most popular open source frame-
works for such large scale data processing on commodity hardware
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are: MapReduce [7] and Spark [19]. These systems provide sim-
ple APIs, and hide the complexity of parallel task execution and
fault-tolerance from the user.

1.1 Cluster Computing Architectures
MapReduce is one of the earliest and best known commodity

cluster frameworks. MapReduce follows the functional program-
ming model [8], and performs explicit synchronization across com-
putational stages. MapReduce exposes a simple programming API
in terms of map() and reduce() functions. Apache Hadoop [1]
is a widely used open source implementation of MapReduce.

The simplicity of MapReduce is attractive for users, but the frame-
work has several limitations. Applications such as machine learn-
ing and graph analytics iteratively process the data, which means
multiple rounds of computation are performed on the same data. In
MapReduce, every job reads its input data, processes it, and then
writes it back to HDFS. For the next job to consume the output of a
previously run job, it has to repeat the read, process, and write cy-
cle. For iterative algorithms, which want to read once, and iterate
over the data many times, the MapReduce model poses a signifi-
cant overhead. To overcome the above limitations of MapReduce,
Spark [19] uses Resilient Distributed Datasets (RDDs) [19] which
implement in-memory data structures used to cache intermediate
data across a set of nodes. Since RDDs can be kept in memory,
algorithms can iterate over RDD data many times very efficiently.

Although MapReduce is designed for batch jobs, it is widely
used for iterative jobs. On the other hand, Spark has been de-
signed mainly for iterative jobs, but it is also used for batch jobs.
This is because the new big data architecture brings multiple frame-
works together working on the same data, which is already stored
in HDFS [17]. We choose to compare these two frameworks due
to their wide spread adoption in big data analytics. All the major
Hadoop vendors such as IBM, Cloudera, Hortonworks, and MapR
bundle both MapReduce and Spark with their Hadoop distributions.

1.2 Key Architectural Components
In this paper, we conduct a detailed analysis to understand how

Spark and MapReduce process batch and iterative jobs, and what
architectural components play a key role for each type of job. In
particular, we (1) explain the behavior of a set of important ana-
lytic workloads which are typically run on MapReduce and Spark,
(2) quantify the performance differences between the two frame-
works, (3) attribute these performance differences to the differences
in their architectural components.

We identify the following three architectural components and
evaluate them through detailed experiments. Studying these com-
ponents covers the majority of architectural differences between
MapReduce and Spark.
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Shuffle: The shuffle component is responsible for exchanging in-
termediate data between two computational stages 1. For example,
in the case of MapReduce, data is shuffled between the map stage
and the reduce stage for bulk synchronization. The shuffle compo-
nent often affects the scalability of a framework. Very frequently,
a sort operation is executed during the shuffle stage. An external
sorting algorithm, such as merge sort, is often required to handle
very large data that does not fit in main memory. Furthermore, ag-
gregation and combine are often performed during a shuffle.
Execution Model: The execution model component determines
how user defined functions are translated into a physical execution
plan. The execution model often affects the resource utilization
for parallel task execution. In particular, we are interested in (1)
parallelism among tasks, (2) overlap of computational stages, and
(3) data pipelining among computational stages.
Caching: The caching component allows reuse of intermediate
data across multiple stages. Effective caching speeds up iterative
algorithms at the cost of additional space in memory or on disk.
In this study, we evaluate the effectiveness of caching available
at different levels including OS buffer cache, HDFS caching [3],
Tachyon [11], and RDD caching.

For our experiments, we use five workloads including Word
Count, Sort, k-means, linear regression, and PageRank. We choose
these workloads because collectively they cover the important char-
acteristics of analytic workloads which are typically run on MapRe-
duce and Spark, and they stress the key architectural components
we are interested in, and hence are important to study. Word Count
is used to evaluate the aggregation component because the size of
intermediate data can be significantly reduced by the map side com-
biner. Sort is used to evaluate the external sort, data transfer, and
the overlap between map and reduce stages because the size of in-
termediate data is large for sort. K-Means and PageRank are used
to evaluate the effectiveness of caching since they are both iterative
algorithms. We believe that the conclusions which we draw from
these workloads running on MapReduce and Spark can be gener-
alized to other workloads with similar characteristics, and thus are
valuable.

1.3 Profiling Tools
To help us quantify the differences in the above architectural

components between MapReduce and Spark, as well as the behav-
ior of a set of important analytic workloads on both frameworks,
we developed the following tools for this study.
Execution Plan Visualization: To understand a physical exe-
cution plan, and the corresponding resource utilization behavior,
we correlate the task level execution plan with the resource utiliza-
tion, and visually present this correlation, for both MapReduce and
Spark.
Fine-grained Time Break-down: To understand where time goes
for the key components, we add timers to the Spark source code to
provide the fine-grained execution time break-down. For MapRe-
duce, we get this time break-down by extracting this information
from the task level logs available in the MapReduce framework.

1.4 Contributions
The key contributions of this paper are as follows. (1) We con-

duct experiments to thoroughly understand how MapReduce and
Spark solve a set of important analytic workloads including both
batch and iterative jobs. (2) We dissect MapReduce and Spark
frameworks and collect statistics from detailed timers to quantify
1For MapReduce, there are two stages: map and reduce. For Spark,
there may be many stages, which are built at shuffle dependencies.

differences in their shuffle component. (3) Through a detailed anal-
ysis of the execution plan with the corresponding resource utiliza-
tion, we attribute performance differences to differences in major
architectural components for the two frameworks. (4) We conduct
micro-benchmark experiments to further explain non-trivial obser-
vations regarding RDD caching.

The rest of the paper is organized as follows. We provide the
workload description in Section 2. In Section 3, we present our
experimental results along with a detailed analysis. Finally, we
present a discussion and summary of our findings in Section 4.

2. WORKLOAD DESCRIPTION
In this section, we identify a set of important analytic workloads

including Word Count (WC), Sort, k-means, linear regression (LR),
and PageRank.

Table 1: Characteristics of Selected Workloads
Word
Count

Sort K-Means
(LR)

Page-
Rank

Type
One Pass

√ √

Iterative
√ √

Shuffle Sel.
High

√

Medium
√

Low
√ √

Job/Iter. Sel.
High

√

Medium
√

Low
√ √

As shown in Table 1, the selected workloads collectively cover
the characteristics of typical batch and iterative analytic applica-
tions run on MapReduce and Spark. We evaluate both one-pass
and iterative jobs. For each type of job, we cover different shuf-
fle selectivity (i.e., the ratio of the map output size to the job input
size, which represents the amount of disk and network I/O for a
shuffle), job selectivity (i.e., the ratio of the reduce output size to
the job input size, which represents the amount of HDFS writes),
and iteration selectivity (i.e., the ratio of the output size to the input
size for each iteration, which represents the amount of intermedi-
ate data exchanged across iterations). For each workload, given
the I/O behavior represented by these selectivities, we evaluate its
system behavior (e.g., CPU-bound, disk-bound, network-bound) to
further identify the architectural differences between MapReduce
and Spark.

Furthermore, we use these workloads to quantitatively evalu-
ate different aspects of key architectural components including (1)
shuffle, (2) execution model, and (3) caching. As shown in Table 2,
for the shuffle component, we evaluate the aggregation framework,
external sort, and transfers of intermediate data. For the execu-
tion model component, we evaluate how user defined functions are
translated into to a physical execution plan, with a focus on task
parallelism, stage overlap, and data pipelining. For the caching
component, we evaluate the effectiveness of caching available at
different levels for caching both input and intermediate data. As
explained in Section 1.2, the selected workloads collectively cover
all the characteristics required to evaluate these three components.

3. EXPERIMENTS

3.1 Experimental Setup

3.1.1 Hardware Configuration
Our Spark and MapReduce clusters are deployed on the same

hardware, with a total of four servers. Each node has 32 CPU cores
at 2.9 GHz, 9 disk drives at 7.2k RPM with 1 TB each, and 190
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Figure 1: The Execution Details of Word Count (40 GB)

Table 2: Key Architectural Components of Interest
Word
Count

Sort K-Means
(LR)

Page-
Rank

Shuffle
Aggregation

√ √ √

External sort
√

Data transfer
√ √

Execution
Task parallelism

√ √ √ √

Stage overlap
√

Data pipelining
√

Caching
Input

√ √

Intermediate data
√

GB of physical memory. In aggregate, our four node cluster has
128 CPU cores, 760 GB RAM, and 36 TB locally attached storage.
The hard disks deliver an aggregate bandwidth of about 125 GB/sec
for reads and 45 GB/sec for writes across all nodes, as measured
using dd. Nodes are connected using a 1 Gbps Ethernet switch.
Each node runs 64-bit Red Hat Enterprise Linux 6.4 (kernel version
2.6.32).

As a comparison, hardware specifications of our physical cluster
are roughly equivalent to a cluster with about 100 virtual machines
(VMs) (e.g., m3.medium on AWS2). Our hardware setup is suitable
for evaluating various scalability bottlenecks in Spark and MapRe-
duce frameworks. For example, we have enough physical cores in
the system to run many concurrent tasks and thus expose any syn-
chronization overheads. However, experiments which may need a
large number of servers (e.g., evaluating the scalability of master
nodes) are out of the scope of this paper.

3.1.2 Software Configuration
Both MapReduce and Spark are deployed on Java 1.7.0.

Hadoop: We use Hadoop version 2.4.0 to run MapReduce on
YARN [17]. We use 8 disks to store intermediate data for MapRe-
duce and for storing HDFS data as well. We configure HDFS with
128 MB block size and a replication factor of 3. We configure
Hadoop to run 32 containers per node (i.e., one per CPU core). To
better control the degree of parallelism for jobs, we enable CGroups
in YARN and also enable CPU-Scheduling 3. The default JVM
heap size is set to 3 GB per task. We tune the following parameters
to optimize performance: (1) We use Snappy compression for map

2http://aws.amazon.com/ec2/instance-types/
3https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

output; (2) For all workloads except Sort, we disable the overlap
between map and reduce stages. This overlap hides the network
overhead by overlapping computation and network transfer. But it
comes at a cost of reduction in map parallelism, and the network
overhead is not a bottleneck for any workload except Sort; (3) For
Sort, we set the number of reduce tasks to 60 to overlap the shuffle
stage (network-bound) with the map stage (without network over-
head), and for other workloads, we set the number of reduce tasks
to 120; (4) We set the number of parallel copiers per task to 2 to
reduce the context switching overhead [16]; (5) We set the map
output buffer to 550 MB to avoid additional spills for sorting the
map output; (6) For Sort, we set the reduce input buffer to 75% of
the JVM heap size to reduce the disk overhead caused by spills.

Spark: We use Spark version 1.3.0 running in the standalone
mode on HDFS 2.4.0. We also use 8 disks for storing Spark in-
termediate data. For each node, we run 8 Spark workers where
each worker is configured with 4 threads (i.e., one thread per CPU
core). We also tested other configurations. We found that when we
run 1 worker with 32 threads, the CPU utilization is significantly
reduced. For example, under this configuration, the CPU utilization
decreases to 33% and 25%, for Word Count and the first iteration of
k-means, respectively. This may be caused by the synchronization
overhead of memory allocation for multi-threaded tasks. However,
CPU can be 100% utilized for all the CPU-bound workloads when
using 8 workers with 4 threads each. Thus, we use this setting for
our experiments. We set the JVM heap size to 16 GB for both the
Spark driver and the executors. Furthermore, we tune the following
parameters for Spark: (1) We use Snappy to compress the interme-
diate results during a shuffle; (2) For Sort with 500 GB input, we set
the number of tasks for shuffle reads to 2000. For other workloads,
this parameter is set to 120.

3.1.3 Profiling tools
In this section, we present the visualization and profiling tools

which we have developed to perform an in-depth analysis of the
selected workloads running on Spark and MapReduce.

Execution Plan Visualization: To understand parallel execution
behavior, we visualize task level execution plans for both MapRe-
duce and Spark. First, we extract the execution time of tasks from
job history of MapReduce and Spark. In order to create a compact
view to show parallelism among tasks, we group tasks to horizontal
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Table 3: Overall Results: Word Count
Platform Spark MR Spark MR Spark MR
Input size (GB) 1 1 40 40 200 200
Number of map tasks 9 9 360 360 1800 1800
Number of reduce tasks 8 8 120 120 120 120
Job time (Sec) 30 64 70 180 232 630
Median time of map tasks (Sec) 6 34 9 40 9 40
Median time of reduce tasks (Sec) 4 4 8 15 33 50
Map Output on disk (GB) 0.03 0.015 1.15 0.7 5.8 3.5

lines. We deploy Ganglia [13] over the cluster, and persist Round-
Robin Database [5] to MySQL database periodically. Finally, we
correlate the system resource utilization (CPU, memory, disk, and
network) with the execution plan of tasks using a time line view.

Figure 1 is an example of such an execution plan visualization.
At the very top, we present a visualization of the physical execu-
tion plan where each task is represented as an horizontal line. The
length of this line is proportional to the actual execution time of a
task. Tasks belonging to different stages are represented in differ-
ent colors. The physical execution plan can then be visually corre-
lated with the CPU, memory, network, and disk resources, which
are also presented in Figure 1. In the resource utilization graphs,
x-axis presents the elapsed time in seconds, and is correlated with
the horizontal axis of the physical execution plan. Moreover, we
break down reduce tasks for MapReduce to three sub-stages: copy,
sort, and reduce. For each batch of simultaneously running task
(i.e., wave), we can read directly down to correlate resources with
the processing that occurs during that wave.

This tool can show: (1) parallelism of tasks (i.e., waves), e.g.,
the first wave is marked in Figure 1 (a), (2) the overlap of stages,
e.g., the overlap between map and reduce stages is shown in Fig-
ure 2 (b), (3) skewness of tasks, e.g., the skewness of map tasks
is shown in Figure 3 (b), and (4) the resource usage behavior for
each stage, e.g., we can see that the map stage is CPU-bound in
Figure 3 (a). Note that the goal of our visualization tool is to help
a user analyze details of the physical execution plan, and the corre-
sponding resource utilization, in order to gain deeper insights into
a workload’s behavior.

Fine-grained Time Break-down: To understand where time goes
for the shuffle component, we provide the fine-grained execution
time break-down for selected tasks. For Spark, we use System.na-
noTime() to add timers to each sub-stage, and aggregate the time
after a task finishes. In particular, we add timers to the following
components: (1) compute() method for RDD transformation, (2)
ShuffleWriter for combine, and (3) BlockObjectWriter for
serialization, compression, and shuffle writes. For MapReduce, we
use the task logs to provide the execution time break-down. We find
that such detailed break-downs are sufficient to quantify differences
in the shuffle components of MapReduce and Spark.

3.2 Word Count
We use Word Count (WC) to evaluate the aggregation compo-

nent for both MapReduce and Spark. For these experiments, we
use the example WC program included with both MapReduce and
Spark, and we use Hadoop’s random text writer to generate input.

3.2.1 Overall Result
Table 3 presents the overall results for WC for various input

sizes, for both Spark and MapReduce. Spark is about 2.1x, 2.6x,
and 2.7x faster than MapReduce for 1 GB, 40 GB, and 200 GB
input, respectively.

Interestingly, Spark is about 3x faster than MapReduce in the
map stage. For both frameworks, the application logic and the

Table 4: Time Break-down of Map Tasks for Word Count
Platform Load

(sec)
Read
(sec)

Map
(sec)

Combine
(sec)

Serialization
(sec)

Compression
&write (sec)

Spark 0.1 2.6 1.8 2.3 2.6 0.1
MapReduce 6.2 12.6 14.3 5.0

amount of intermediate data is similar. We believe that this dif-
ference is due to the differences in the aggregation component. We
evaluate this observation further in Section 3.2.3 below.

For the reduce stage, the execution time is very similar in Spark
and MapReduce because the reduce stage is network-bound and the
amount of data to shuffle is similar in both cases.

3.2.2 Execution Details
Figure 1 shows the detailed execution plan for WC with 40 GB

input. Our deployment of both MapReduce and Spark can exe-
cute 128 tasks in parallel, and each task processes 128 MB of data.
Therefore, it takes three waves of map tasks (shown in blue in Fig-
ure 1) to process the 40 GB input. As we show the execution time
when the first task starts on the cluster, there may be some initial-
ization lag on worker nodes (e.g., 0 to 4 seconds in Figure 1 (b)).
Map Stage: We observe that in Spark, the map stage is disk-bound
while in MapReduce it is CPU-bound. As each task processes the
same amount of data (i.e., 128 MB), this indicates that Spark takes
less CPU time than MapReduce in the map stage. This is consistent
with the 3x speed-up shown in Table 3.
Reduce Stage: The network resource utilization in Figure 1 shows
that the reduce stage is network-bound for both Spark and MapRe-
duce. However, the reduce stage is not a bottleneck for WC because
(1) most of the computation is done during the map side combine,
and (2) the shuffle selectivity is low (< 2%), which means that
reduce tasks have less data to process.

3.2.3 Breakdown for the Map Stage
In order to explain the 3x performance difference during the map

stage, we present the execution time break-down for map tasks in
both Spark and MapReduce in Table 4. The reported execution
times are an average over 360 map tasks with 40 GB input to WC.
First, MapReduce is much slower than Spark in task initialization.
Second, Spark is about 2.9x faster than MapReduce in input read
and map operations. Last, Spark is about 6.2x faster than MapRe-
duce in the combine stage. This is because the hash-based combine
is more efficient than the sort-based combine for WC. Spark has
lower complexity in its in-memory collection and combine compo-
nents, and thus is faster than MapReduce.

3.2.4 Summary of Insights
For WC and similar workloads such as descriptive statistics, the

shuffle selectivity can be significantly reduced by using a map side
combiner. For this type of workloads, hash-based aggregation in
Spark is more efficient than sort-based aggregation in MapReduce
due to the complexity differences in its in-memory collection and
combine components.

3.3 Sort
For experiments with Sort, we use TeraSort [15] for MapRe-

duce, and implement Sort using sortByKey() for Spark. We
use gensort 4 to generate the input for both.

We use experiments with Sort to analyze the architecture of the
shuffle component in MapReduce and Spark. The shuffle compo-
nent is used by Sort to get a total order on the input and is a bottle-
neck for this workload.
4http://www.ordinal.com/gensort.html
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Figure 2: The Execution Details of Sort (100 GB Input)

Table 5: Overall Results: Sort

Platform Spark MR Spark MR Spark MR
Input size (GB) 1 1 100 100 500 500
Number of map tasks 9 9 745 745 4000 4000
Number of reduce tasks 8 8 248 60 2000 60
Job time 32s 35s 4.8m 3.3m 44m 24m
Sampling stage time 3s 1s 1.1m 1s 5.2m 1s
Map stage time 7s 11s 1.0m 2.5m 12m 13.9m
Reduce stage time 11s 24s 2.5m 45s 26m 9.2m
Map output on disk (GB) 0.63 0.44 62.9 41.3 317.0 227.2

3.3.1 Overall Result
Table 5 presents the overall results for Sort for 1 GB, 100 GB,

and 500 GB input, for both Spark and MapReduce. For 1 GB input,
Spark is faster than MapReduce because Spark has lower control
overhead (e.g., task load time) than MapReduce. MapReduce is
1.5x and 1.8x faster than Spark for 100 GB and 500 GB inputs,
respectively. Note that the results presented in [6] show that Spark
outperformed MapReduce in the Daytona Gray Sort benchmark.
This difference is mainly because our cluster is connected using 1
Gbps Ethernet, as compared to a 10 Gbps Ethernet in [6], i.e., in
our cluster configuration network can become a bottleneck for Sort
in Spark, as explained in Section 3.3.2 below.

From Table 5 we can see that for the sampling stage, MapReduce
is much faster than Spark because of the following reason: MapRe-
duce reads a small portion of the input file (100, 000 records from
10 selected splits), while Spark scans the whole file. For the map
stage, Spark is 2.5x and 1.2x faster than MapReduce for 100 GB
and 500 GB input, respectively. For the reduce stage, MapReduce
is 3.3x and 2.8x faster than Spark for 100 GB and 500 GB input,
respectively. To better explain this difference, we present a detailed
analysis of the execution plan in Section 3.3.2 and a break-down of
the execution time in Section 3.3.3 below.

3.3.2 Execution Details
Figure 2 shows the detailed execution plan of 100 GB Sort for

MapReduce and Spark along with the resource utilization graphs.

Sampling Stage: The sampling stage of MapReduce is performed
by a lightweight central program in less than 1 second, so it is not
shown in the execution plan. Figure 2 (b) shows that during the
initial part of execution (i.e., sampling stage) in Spark, the disk
utilization is quite high while the CPU utilization is low. As we

Table 6: Time Break-down of Map Tasks for Sort
Platform Load

(sec)
Read
(sec)

Map
(sec)

Combine
(sec)

Serialization
(sec)

Compression
&write (sec)

Spark-Hash 0.1 1.1 0.8 - 3.0 5.5
Spark-Sort 0.1 1.2 0.6 6.4 2.3 2.4
MapReduce 6.6 10.5 4.1 2.0

mentioned earlier, Spark scans the whole input file during sampling
and is therefore disk-bound.
Map Stage: As shown in Figure 2, both Spark and MapReduce are
CPU-bound in the map stage. Note that the second stage is the map
stage for Spark. Even though Spark and MapReduce use different
shuffle frameworks, their map stages are bounded by map output
compression. Furthermore, for Spark, we observe that disk I/O is
significantly reduced in the map stage compared to the sampling
stage, although its map stage also scans the whole input file. The
reduced disk I/O is a result of reading input file blocks cached in
the OS buffer during the sampling stage.
Reduce Stage: The reduce stage in both Spark and MapReduce
uses external sort to get a total ordering on the shuffled map output.
MapReduce is 2.8x faster than Spark for this stage. As the execu-
tion plan for MapReduce in Figure 2 (a) shows, the main cause of
this speed-up is that the shuffle stage is overlapped with the map
stage, which hides the network overhead. The current implemen-
tation of Spark does not support the overlap between shuffle write
and read stages. This is a notable architectural difference between
MapReduce and Spark. Spark may want to support this overlap in
the future to improve performance. Last, note that the number of
replicas in this experiment is set to 1 according to the sort bench-
mark [15], thus there is no network overhead for HDFS writes in
reduce tasks.

When the input size increases from 100 GB to 500 GB, during
the map stage in Spark, there is significant CPU overhead for swap-
ping pages in OS buffer cache. However, for MapReduce, we ob-
serve much less system CPU overhead during the map stage. This
is the main reason that the map stage speed-up between Spark and
MapReduce is reduced from 2.5x to 1.2x.

3.3.3 Breakdown for the Map Stage
Table 6 shows a break-down of the map task execution time for

both MapReduce and Spark, with 100 GB input. A total of 745
map tasks are executed, and we present the average execution time.
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We find that there are two stages where MapReduce is slower than
Spark. First, the load time in MapReduce is much slower than that
in Spark. Second, the total times of (1) reading the input (Read),
and (2) for applying the map function on the input (Map), is higher
than Spark. The reasons why Spark performs better include: (1)
Spark reads part of the input from the OS buffer cache since its sam-
pling stage scans the whole input file. On the other hand, MapRe-
duce only partially reads the input file during sampling thus OS
buffer cache is not very effective during the map stage. (2) MapRe-
duce collects the map output in a map side buffer before flushing
it to disk, but Spark’s hash-based shuffle writer, writes each map
output record directly to disk, which reduces latency.

3.3.4 Comparison of Shuffle Components
Since Sort is dominated by the shuffle stage, we evaluate differ-

ent shuffle frameworks including hash-based shuffle (Spark-Hash),
sort-based shuffle (Spark-Sort), and MapReduce.

First, we find that the execution time of the map stage increases
as we increase the number of reduce tasks, for both Spark-Hash and
Spark-Sort. This is because of the increased overhead for handling
opened files and the commit operation of disk writes. As opposed to
Spark, the number of reduce tasks has little effect on the execution
time of the map stage for MapReduce.

The number of reduce tasks has no affect on the execution time
of Spark’s reduce stage. However, for MapReduce, the execution
time of the reduce stage increases as more reduce tasks are used
because less map output can be copied in parallel with the map
stage as the number of reduce tasks increases.

Second, we evaluate the impact of buffer sizes for both Spark
and MapReduce. For both MapReduce and Spark, when the buffer
size increases, the reduced disk spills cannot lead to the reduction
in the execution time since disk I/O is not a bottleneck. However,
the increased buffer size may lead to slow-down in Spark due to the
increased overhead for GC and page swapping in OS buffer cache.

3.3.5 Summary of Insights
For Sort and similar workloads such as Nutch Indexing and

TFIDF [10], the shuffle selectivity is high. For this type of work-
loads, we summarize our insights from Sort experiments as follows:
(1) In MapReduce, the reduce stage is faster than Spark because
MapReduce can overlap the shuffle stage with the map stage, which
effectively hides the network overhead. (2) In Spark, the execution
time of the map stage increases as the number of reduce tasks in-
crease. This overhead is caused by and is proportional to the num-
ber of files opened simultaneously. (3) For both MapReduce and
Spark, the reduction of disk spills during the shuffle stage may not
lead to the speed-up since disk I/O is not a bottleneck. However,
for Spark, the increased buffer may lead to the slow-down because
of increased overhead for GC and OS page swapping.

3.4 Iterative Algorithms: K­Means and Lin­
ear Regression

K-Means is a popular clustering algorithm which partitions N
observations into K clusters in which each observation belongs to
the cluster with the nearest mean. We use the generator from Hi-
Bench [10] to generate training data for k-means. Each training
record (point) has 20 dimensions. We use Mahout [2] k-means for
MapReduce, and the k-means program from the example package
for Spark. We revised the Mahout code to use the same initial cen-
troids and convergence condition for both MapReduce and Spark.

K-Means is representative of iterative machine learning algo-
rithms. For each iteration, it reads the training data to calculate
updated parameters (i.e., centroids). This pattern for parameter

Table 7: Overall Results: K-Means
Platform Spark MR Spark MR Spark MR
Input size (million records) 1 1 200 200 1000 1000
Iteration time 1st 13s 20s 1.6m 2.3m 8.4m 9.4m
Iteration time Subseq. 3s 20s 26s 2.3m 2.1m 10.6m
Median map task time 1st 11s 19s 15s 46s 15s 46s
Median reduce task time 1st 1s 1s 1s 1s 8s 1s
Median map task time Subseq. 2s 19s 4s 46s 4s 50s
Median reduce task time Subseq. 1s 1s 1s 1s 3s 1s
Cached input data (GB) 0.2 - 41.0 - 204.9 -

optimization covers a large set of iterative machine learning algo-
rithms such as linear regression, logistic regression, and support
vector machine. Therefore, the observations we draw from the re-
sults presented in this section for k-means are generally applicable
to the above mentioned algorithms.

As shown in Table 1, both the shuffle selectivity and the iteration
selectivity of k-means is low. Suppose there are N input records
to train K centroids, both map output (for each task) and job out-
put only have K records . Since K is often much smaller than N ,
both the shuffle and iteration selectivities are very small. As shown
in Table 2, the training data can be cached in-memory for subse-
quent iterations. This is common in machine learning algorithms.
Therefore, we use k-means to evaluate the caching component.

3.4.1 Overall Result
Table 7 presents the overall results for k-means for various in-

put sizes, for both Spark and MapReduce. For the first iteration,
Spark is about 1.5x faster than MapReduce. For subsequent itera-
tions, because of RDD caching, Spark is more than 5x faster than
MapReduce for all input sizes.

We compare the performance of various RDD caching options
(i.e., storage levels) available in Spark, and we find that the effec-
tiveness of all the persistence mechanisms is almost the same for
this workload. We explain the reason in Section 3.4.3.

Another interesting observation is that when there is no in-heap
caching (i.e., for Spark without RDD caching and MapReduce), the
disk I/O decreases from one iteration to the next iteration because
of the increased hit ratio of OS buffer cache for input from HDFS.
However, this does not result in a reduction in the execution time.
We explain these observations in Section 3.4.4.

3.4.2 Execution Details
Figure 3 shows the detailed execution plan for k-means with an

input of 200 million records for MapReduce and Spark. We present
the first five iterations. Subsequent iterations exhibit similar char-
acteristics.

Map Stage: For both MapReduce and Spark, the map stage takes
up more than 99% of the total execution time in each iteration and
hence is the bottleneck. During the map stage, both MapReduce
and Spark scan the training data to update the cluster centroids.
For MapReduce (Mahout k-means), it uses a map side hash table
to combine the updated value of the centroid. For Spark, it uses
a map side combiner (implemented in reduceByKey()) to up-
date centroids. The shuffle selectivity is very small. For example,
with 200 million records, the selectivity is 0.00001 and 0.004, for
MapReduce and Spark, respectively.

The map stage is CPU-bound for all iterations of both MapRe-
duce and Spark due to the low shuffle selectivity. Moreover, for
MapReduce, we observe that the disk read overhead decreases from
one iteration to the next iteration. Since there is no in-heap caching
in MapReduce framework, it depends on OS buffer to cache the
training data. However, OS buffer cache does not result in exe-
cution time improvements, as we show later in Section 3.4.4. As
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Figure 3: The Execution Details of K-Means (200 Million Records)

Table 8: The Impact of Storage Levels for K-Means
Storage Levels Caches

Size
First Iter-
ations

Subsequent
Iterations

NONE - 1.3m 1.2m
DISK ONLY 37.6 GB 1.5m 29s
DISK ONLY 2 37.6 GB 1.9m 27s
MEMORY ONLY 41.0 GB 1.5m 26s
MEMORY ONLY 2 41.0 GB 2.0m 25s
MEMORY ONLY SER 37.6 GB 1.5m 29s
MEMORY ONLY SER 2 37.6 GB 1.9m 28s
MEMORY AND DISK 41.0 GB 1.5m 26s
MEMORY AND DISK 2 41.0 GB 2.0m 25s
MEMORY AND DISK SER 37.6 GB 1.5m 29s
MEMORY AND DISK SER 2 37.6 GB 1.9m 27s
OFF HEAP (Tachyon) 37.6 GB 1.5m 30s

opposed to MapReduce, there is no disk read overhead in subse-
quent iterations for Spark, because the input is stored in memory
as RDDs. Note that the 3.5x speed-up for subsequent iterations in
Spark cannot be fully attributed to the reduced disk I/O overhead.
We explain this in Section 3.4.4.

Reduce Stage: Both MapReduce and Spark use a map-side com-
biner. Therefore, the reduce stage is not a bottleneck for both
frameworks. The network overhead is low due to the low shuffle
selectivity. Furthermore, there is no disk overhead for Spark during
the reduce stage since it aggregates the updated centroids in Spark’s
driver program memory. Even though MapReduce writes to HDFS
for updating the centroids, the reduce stage is not a bottleneck due
to the low iteration selectivity.

Furthermore, we observe the same resource usage behavior for
the 1 billion data set when the input data does not fit into mem-
ory. The only difference is the increased system CPU time for page
swapping at the end of the last wave during the map stage. But this
does not change the overall workload behavior.

3.4.3 Impact of RDD caching
RDD caching is one of the most notable features of Spark, and

is missing in MapReduce. K-means is a typical iterative machine
learning algorithm that can benefit from RDD caching. In the first
iteration, it parses each line of a text file to a Point object, and per-
sists the Point objects as RDDs in the storage layer. In subsequent
iterations, it repeatedly calculates the updated centroids based on
cached RDDs. To understand the RDD caching component, we
evaluate the impact of various storage levels on the effectiveness of

Table 9: The Impact of Memory Constraints
Storage Levels Fraction Persistence

ratio
First Iter-
ations

Subsequent
Iterations

MEMORY ONLY 0 0.0% 1.4m 1.2m
MEMORY ONLY 0.1 15.6% 1.5m 1.2m
MEMORY ONLY 0.2 40.7% 1.5m 1.0m
MEMORY ONLY 0.3 67.2% 1.6m 47s
MEMORY ONLY 0.4 98.9% 1.5m 33s
MEMORY ONLY 0.5 100% 1.6m 30s
MEMORY AND DISK 0 100% 1.5m 28s
MEMORY AND DISK 0.1 100% 1.5m 30s
MEMORY AND DISK 0.2 100% 1.6m 30s
MEMORY AND DISK 0.3 100% 1.6m 28s
MEMORY AND DISK 0.4 100% 1.5m 28s
MEMORY AND DISK 0.5 100% 1.5m 28s
DISK ONLY - 100% 1.5m 29s

RDD caching. We also evaluate the impact of memory constraints
on the effectiveness of RDD caching.

Impact of Storage Levels: The version of Spark we evaluate pro-
vides 11 storage levels including MEMORY ONLY, DISK ONLY,
MEMORY AND DISK, and Tachyon [11]. For memory only re-
lated levels, we can choose to serialize the object before storing
it. For all storage levels except Tachyon, we can also choose to
replicate each partition on two cluster nodes (e.g., DISK ONLY 2
means to persist RDDs on disks of two cluster nodes).

Table 8 presents the impact of storage levels on the execution
time of first iterations, subsequent iterations, and the size of RDD
caches. Surprisingly, the execution time of subsequent iterations is
almost the same regardless of whether RDDs are cached in mem-
ory, on disk, or in Tachyon. We explain this in Section 3.4.4. In
addition, replication of partitions leads to about 30% increase in
the execution time of first iterations, because of the additional net-
work overhead.

Finally, we observe that the raw text file is 69.4 GB on HDFS.
The size of RDDs for the Point object is 41.0 GB in memory, which
reduces to 37.6 GB after serialization. Serialization is a trade-off
between CPU time for serialization/de-serialization and the space
in-memory/on-disk for RDD caching. Table 8 shows that RDD
caching without serialization is about 1.1x faster than that with se-
rialization. This is because k-means is already CPU-bound, and
serialization results in additional CPU overhead.

Impact of Memory Constraints: For MEMORY ONLY, the num-
ber of cached RDD partitions depends on the fraction of memory
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allocated to the MemoryStore, which is configurable. For other
storage levels, when the size of MemoryStore exceeds the config-
ured limit, RDDs which have to be persisted will be stored on disk.
Table 9 presents the impact of memory constraints on the persis-
tence ratio (i.e., the number of cached partitions / the number of all
partitions), execution time of first iterations, and execution time of
subsequent iterations. The persistence ratio of MEMORY ONLY
decreases as less memory is allocated for MemoryStore. More-
over, the persistence ratio rather than the storage level is the main
factor that affects the execution time of subsequent iterations. This
is consistent with the results shown in Table 8. From these re-
sults, we conclude that there is no significant performance differ-
ence when using different storage levels for k-means.

3.4.4 What is the bottleneck for k­means?
From the experiments, we make several non-trivial observations

for k-means: (a) The storage levels do not impact the execution
time of subsequent iterations. (b) For DISK ONLY, there are al-
most no disk reads in subsequent iterations. (c) When there is no
RDD caching, disk reads decrease from one iteration to the next
iteration, but this does not lead to execution time improvements.

To explain these observations and further understand RDD
caching in Spark, we conduct the following micro-benchmark ex-
periments. We use DISK ONLY as the baseline. (1) We set the
fraction of Java heap for MemoryStore to 0 MB. Compared to the
baseline, there is no difference in execution time and memory con-
sumption. This means that DISK ONLY does not store any RDDs
in Java heap. (2) We reduce the number of disks for storing inter-
mediate data (i.e., RDD caching) from 8 to 1. The execution time
is still the same as the baseline, but we observe that the disk uti-
lization increases by about 8x on the retained disk compared to the
baseline. This means that disks are far from 100% utilized when
we have 8 disks to store intermediate data. (3) We reduce memory
of executors from 32 GB to 200 MB. The execution time is 17%
slower compared to the baseline. This is because of the increased
GC overhead. Note that there is still no disk read in subsequent
iterations. (4) We drop OS buffer cache after the first iteration. We
observe that the execution time of the subsequent iteration is in-
creased from 29 seconds to 53 seconds. Moreover, we find heavy
disk reads after OS buffer cache is dropped. The retained disk is
100% utilized, and 80% of CPU time becomes iowait time. This
means that RDDs are cached in pages of the OS buffer after the first
iteration when we use DISK ONLY. (5) To further evaluate the per-
formance of DISK ONLY RDD caching without OS buffer cache,
we restore 8 disks to store intermediate results. We also drop OS
buffer cache after the first iteration. We observe that the execution
time of the subsequent iteration is reduced from 53 seconds to 29
seconds. There are still disk reads after OS buffer cache is dropped,
but user CPU time is restored to 100%. This means that when all
disks are restored for RDD caching, disk reads are no longer the
bottleneck even without OS buffer cache. With 8 disks, the aggre-
gate disk bandwidth is more than enough to sustain the IO rate for
k-means, with or without OS buffer cache.

However, these results lead to the following additional observa-
tions: (d) When there is no RDD caching, OS buffer cache does not
improve the execution time. (e) In the case without RDD caching,
disk reads decrease faster than with DISK ONLY RDD caching. To
explain (c), (d), and (e), we design another set of micro-benchmark
experiments to detect the bottleneck for iterations which read input
from HDFS. We first design a micro-benchmark to minimize the
CPU overhead to evaluate the behavior of HadoopRDD (An RDD
that provides core functionality for reading data stored in Hadoop).
The HadoopRDD is scanned and persisted in the first iteration, then

the cached RDDs are scanned with count() in subsequent itera-
tions. For NONE (i.e., without RDD caching), we observe that the
execution time decreases in subsequent iterations as more blocks
from HDFS are cached in the OS buffer. As opposed to k-means,
the OS buffer cache reduces the execution time of subsequent iter-
ations, since disk reads is the bottleneck for this micro-benchmark.
Further, because of data locality, the hit ratio of OS buffer cache is
about 100% in the second iteration for DISK ONLY, but that ratio
is about only 30% for NONE. When HDFS caching [3] is enabled,
the execution time of subsequent iterations decreases as more repli-
cas are stored in the HDFS cache. From the above experiments, we
established that the OS buffer cache improves the execution time of
subsequent iterations if disk I/O is a bottleneck.

Next, we change a single line in k-means code to persist
HadoopRDD before parsing lines to Point objects. We observe that
the execution time of subsequent iterations is increased from 27
and 29 seconds to 1.4 and 1.3 minutes, for MEMORY ONLY and
DISK ONLY, respectively. Moreover, the disk utilization of sub-
sequent iterations is the same as k-means and HadoopRDD scan.
This indicates that the CPU overhead of parsing each line to the
Point object is the bottleneck for the first iteration that reads in-
put from HDFS. Therefore, for k-means without RDD caching, the
reduction of disk I/O due to OS buffer cache does not result in exe-
cution time improvements for subsequent iterations, since the CPU
overhead of transforming the text to Point object is a bottleneck.

3.4.5 Linear Regression
We also evaluated linear regression with maximum 1000000 ∗

50000 training records (372 GB), for both MapReduce and Spark.
We observed the same behavior as k-means. Thus, we do not repeat
those details here. The only difference is that linear regression re-
quires larger executor memory as compared to k-means. Therefore,
the total size of the OS buffer cache and the JVM heap exceeds the
memory limit on each node. This leads to about 30% system CPU
overhead for OS buffer cache swapping. This CPU overhead can
be eliminated by using DISK ONLY RDD caching which reduces
memory consumption.

3.4.6 Summary of Insights
A large set of iterative machine learning algorithms such as k-

means, linear regression, and logistic regression read the training
data to calculate a small set of parameters iteratively. For this type
of workloads, we summarize our insights from k-means as follows:
(1) For iterative algorithms, if an iteration is CPU-bound, caching
the raw file (to reduce disk I/O) may not help reduce the execution
time since the disk I/O is hidden by the CPU overhead. But on the
contrary, if an iteration is disk-bound, caching the raw file can sig-
nificantly reduce the execution time. (2) RDD caching can reduce
not only disk I/O, but also the CPU overhead since it can cache
any intermediate data during the analytic pipeline. For example,
the main contribution of RDD caching for k-means is to cache the
Point object to save the transformation cost from a text line, which
is the bottleneck for each iteration. (3) If OS buffer is sufficient, the
hit ratio of both OS buffer cache and HDFS caching for the training
data set increases from one iteration to the next iteration, because
of the replica locality from previous iterations.

3.5 PageRank
PageRank is a graph algorithm which ranks elements by count-

ing the number and quality of links. To evaluate PageRank algo-
rithm on MapReduce and Spark, we use Facebook 5 and Twitter 6

5http://current.cs.ucsb.edu/facebook/index.html
6http://an.kaist.ac.kr/traces/WWW2010.html
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Table 10: Overall Results: PageRank
Platform Spark-

Naive
Spark-
GraphX

MR Spark-
Naive

Spark-
GraphX

MR

Input (million edges) 17.6 17.6 17.6 1470 1470 1470
Pre-processing 24s 28s 93s 7.3m 2.6m 8.0m
1st Iter. 4s 4s 43s 3.1m 37s 9.3m
Subsequent Iter. 1s 2s 43s 2.0m 29s 9.3m
Shuffle data 73.1MB 69.4MB 141MB 8.4GB 5.5GB 21.5GB

data sets. The interaction graph for Facebook data set has 3.1 mil-
lion vertices and 17.6 million directed edges (219.4 MB). For Twit-
ter data set, the interaction graph has 41.7 million vertices and 1.47
billion directed edges (24.4 GB). We use X-RIME PageRank [18]
for MapReduce. We use both PageRank programs from the ex-
ample package (denoted as Spark-Naive) and PageRank in GraphX
(denoted as Spark-GraphX), since the two algorithms represent dif-
ferent implementations of graph algorithms using Spark.

For each iteration in MapReduce, in the map stage, each vertex
loads its graph data structure (i.e., adjacency list) from HDFS, and
sends its rank to its neighbors through a shuffle. During the reduce
stage, each vertex receives the ranks of its neighbors to update its
own rank, and stores both the adjacency list and ranks on HDFS for
the next iteration. For each iteration in Spark-Naive, each vertex
receives ranks of its neighbors through shuffle reads, and joins the
ranks with its vertex id to update ranks, and sends the updated ranks
to its neighbors through shuffle writes. There is only one stage
per iteration in Spark-Naive. This is because Spark uses RDDs to
represent data structures for graphs and ranks, and there is no need
to materialize these data structures across multiple iterations.

As shown in Table 1, both shuffle selectivity (to exchange ranks)
and iteration selectivity (to exchange graph structures) of PageR-
ank is much higher as compared to k-means. We can use RDDs
to keep graph data structures in memory in Spark across iterations.
Furthermore, the graph data structure in PageRank is more com-
plicated than Point object in k-means. These characteristics make
PageRank an excellent candidate to further evaluate the caching
component and data pipelining for MapReduce and Spark.

3.5.1 Overall Result
Table 10 presents the overall results for PageRank for various so-

cial network data sets, for Spark-Naive, Spark-GraphX and MapRe-
duce. Note that the graph data structure is stored in memory af-
ter the pre-processing for Spark-Naive and Spark-GraphX. For all
stages including pre-processing, the first iteration and subsequent
iterations, Spark-GraphX is faster than Spark-Naive, and Spark-
Naive is faster than MapReduce.

Spark-GraphX is about 4x faster than Spark-Naive. This is be-
cause the optimized partitioning approach of GraphX can better
handle data skew among tasks. The degree distributions of real
world social networks follow power-law [14], which means that
there is significant skew among tasks in Spark-Naive. Moreover,
the Pregel computing framework in GraphX reduces the network
overhead by exchanging ranks via co-partitioning vertices [12]. Fi-
nally, when we serialize the graph data structure, the optimized
graph data structure in GraphX reduces the computational overhead
as compared to Spark-Naive.

3.5.2 Execution Details
Figure 4 shows the detailed execution plan along with resource

utilization graphs for PageRank, with the Twitter data set for both
MapReduce and Spark. We present five iterations since the rest of
the iterations show similar characteristics.

As shown in Figure 4 (a), the map and reduce stages take al-
most the same time. We observe two significant communication

Table 11: The Impact of Storage Levels for PageRank (Spark)
Storage Levels Algorithm Caches

(GB)
First
Iteration
(min)

Subsequent
Iteration
(min)

NONE Naive - 4.1m 3.1m
MEMORY ONLY Naive 74.9GB 3.1m 2.0m
DISK ONLY Naive 14.2GB 3.0m 2.1m
MEMORY ONLY SER Naive 14.2GB 3.0m 2.1m
OFF HEAP (Tachyon) Naive 14.2GB 3.0m 2.1m
NONE GraphX - 32s -
MEMORY ONLY GraphX 62.9GB 37s 29s
DISK ONLY GraphX 43.1GB 68s 50s
MEMORY ONLY SER GraphX 43.1GB 61s 43s

Table 12: Execution Time with Varying Number of Disks
WC (40 GB) Sort (100 GB) k-means (200 m)

Disk # Spark MR Spark MR Spark MR
1 1.0m 2.4m 4.8m 3.5m 3.6m 11.5m
2 1.0m 2.4m 4.8m 3.4m 3.7m 11.5m
4 1.0m 2.4m 4.8m 3.5m 3.7m 11.7m
8 1.0m 2.4m 4.8m 3.4m 3.6m 11.7m

and disk I/O overheads during each iteration: 1) exchanging ranks
among vertices during the shuffle stage, and 2) materializing the
adjacency list and ranks on HDFS for the next iteration in the re-
duce write stage. As shown in Figure 4 (b), the network and disk
I/O overhead for each iteration is caused by the shuffle for exchang-
ing ranks among vertices. Compared to MapReduce, the overhead
for persisting adjacency list on HDFS is eliminated in Spark due to
RDD caching.

However, the difference of execution time between MapReduce
and Spark-Naive cannot be fully attributed to network and disk I/O
overheads. As shown in Figure 4, both Spark and MapReduce are
CPU-bound for each iteration. By using HPROF [4], we observe
that more than 30% of CPU time is spent on serialization and de-
serialization for the adjacency list object in MapReduce. Therefore,
materialization for the adjacency list across iterations leads to sig-
nificant disk, network, and serialization overheads in MapReduce.

3.5.3 Impact of RDD caching
Table 11 presents the impact of various storage levels on the ef-

fectiveness of RDD caching for PageRank. For Spark-Naive, the
execution time of both the first iteration and the subsequent itera-
tions is not sensitive to storage levels. Furthermore, serialization
can reduce the size of RDD by a factor of five.

For Spark-GraphX, RDD caching options with serialization re-
sult in about 50% performance degradation in subsequent iterations
compared to MEMORY ONLY due to the CPU overhead for de-
serialization. In addition, when we disable RDD caching, the ex-
ecution time, and the amount of shuffled data increase from one
iteration to the next iteration.

3.5.4 Summary of Insights
For PageRank and similar graph analytic algorithms such as

Breadth First Search and Community Detection [18] that read the
graph structure and iteratively exchange states through a shuffle,
we summarize insights from our PageRank experiments as follows:
(1) Compared to MapReduce, Spark can avoid materializing graph
data structures on HDFS across iterations, which reduces overheads
for serialization/de-serialization, disk I/O, and network I/O. (2) In
Graph-X, the CPU overhead for serialization/de-serialization may
be higher than the disk I/O overhead without serialization.

3.6 Impact of Cluster Configurations
In this section, we measure the performance impact of varying

two key parameters: 1) the number of disks 2) the JVM heap size.
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Figure 4: The Execution Details of PageRank (Twitter Data)

3.6.1 Execution Time with Varying Number of Disks
In this set of experiments, we vary the number of disks used to

store intermediate data (i.e., map output for MapReduce and Spark,
RDD caching on disk for Spark) to measure its impact on perfor-
mance. We use DISK ONLY configuration for Spark k-means to
ensure that RDDs are cached on disk. As shown in Table 12, the
execution time for these workloads is not sensitive to the number
of disks for intermediate data storage. Also, through the analysis of
the detailed execution plan, even for the single disk case, we find
that the disk is not fully utilized.

Next, we manually drop OS buffer cache during the execution
of a job to ensure that the intermediate data is read from the disks.
This has little impact on most of the workloads. The only excep-
tion is Spark k-means when using only 1 disk for RDD caching.
By breaking down the execution time for this case, we find that
clearing the OS cache results in approximately 80% performance
degradation for the next iteration.

From the above results, we conclude that disk I/O for intermedi-
ate data is not a bottleneck for typical cluster configurations, for a
majority of MapReduce and Spark workloads. On the other hand,
for some extremely unbalanced cluster configurations (e.g., 24 CPU
cores with 1 disk and no OS buffer cache), disk I/O becomes a bot-
tleneck.

3.6.2 Impact of Memory Limits
In the next set of experiments, we vary the JVM heap size to

evaluate the impact of various memory limits including the case in
which data does not fit in main memory. For a fair comparison,
we disable the overlap between map and reduce stages for MapRe-
duce. We run these experiments with 40 GB WC, 100 GB Sort
and 200 million records k-means. Table 13 presents the impact of
the JVM heap size on the task execution time, the fraction of time
spent in GC, and additional data spilling. All the metrics presented
in this table are median values among the tasks. We find that: (1)
The fraction of GC time decreases as the JVM heap size increases,
except for the reduce stage for Spark-Sort with 4 GB heap size per
task. This is caused by the additional overhead for OS page swap-
ping (explained in Section 3.3.4); (2) When the JVM heap size is
larger than 256 MB, the fraction of GC time becomes relatively sta-
ble; (3) The execution time is not sensitive to additional data spills
to disks since disk I/O is not a bottleneck for WC and Sort, for both

Table 15: The Execution Times with Task Failures
Sort (map
killed)

Sort (reduce
killed)

k-means (1st&4th
iter killed)

Nf %
killed

%slow-
down

%
killed

%slow-
down

%
killed

%
slow-
down
(1st)

%
slow-
down
(4th)

Spark

1 1.6% 2.1% 33.3% 108.3% 1.2% 7.1% 57.7%
1 1.6% 6.3% 49.2% 129.2% 4.9% 14.3% 80.8%
1 4% 6.3% 63.3% 129.2% 9.8% 14.3% 92.3%
4 3.6% 4.2% 40% 81.3% 4.9% 7.1% 57.7%
4 14.6% 6% 106% 62.5% 18.2% 21.4% 176.9%
4 27.3% 12.5% 122% 70.8% 37.4% 42.9% 269.2%

MapReduce

1 0.5% 36.8% 3.3% 18.2% 1.3% 7.9% 7.1%
1 1.9% 40.0% 13.3% 18.6% 5% 18.6% 6.4%
1 3.1% 58.2% 25.8% 18.6% 10% 26.4% 27.9%
4 1.9% 7.3% 13.3% 14.1% 5% 5.7% 2.9%
4 7.3% 10.5% 26.75% 13.6% 20% 10.0% 6.4%
4 10.5% 18.2% 53.3% 29.1% 39.7% 22.1% 24.3%

MapReduce and Spark. As shown in Table 14, the impact of the
JVM heap size on k-means performance is very similar in compar-
ison to WC and Sort. In summary, if tasks run with the JVM heap
size above a certain level (e.g., larger than 256 MB), the JVM heap
size will not significantly affect the execution time for most of the
MapReduce and Spark workloads even with additional data spills
to disks.

3.7 Fault­Tolerance
This section evaluates the effectiveness of the built-in fault-

tolerance mechanisms in MapReduce and Spark. We present the
results for Sort and k-means in Table 15 (the results for other work-
loads are similar). The killed tasks are evenly distributed on Nf

nodes, ranging from a single node to all four nodes in the clus-
ter. These experiments confirm that both frameworks provide fault-
tolerance for tasks. As shown in Table 15, when tasks are killed
during the reduce stage for Sort, the slow-down for Spark is much
worse than that for MapReduce. Comparing to MapReduce, where
only reduce tasks are re-executed, in Spark the loss of an executor
will lead to the re-execution of the portion of map tasks which lost
the block information. Thus, a potential improvement for Spark is
to increase the availability of the block information in case of fail-
ure. In the experiments with k-means, tasks are killed during the
first, and the fourth iteration. As shown in the rightmost column
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Table 13: The Impact of JVM Heap Size on WC and Sort
Spark MR

JVM
per task

job
time

map
me-
dian

%GC
map

reduce
me-
dian

%GC
re-
duce

map
spill

reduce
spill

job
time

map
me-
dian

%GC
map

reduce
me-
dian

%GC
re-
duce

map
spill

reduce
spill

WC (40 GB)

32 MB 1.2m 12s 25% 12s 33% 2.4 MB 5.7MB failed - - - - - -
64 MB 1.1m 11s 18% 10s 20% 1.9 MB 4.3MB 8.6m 2.5m 72% 15s 19% 1.67MB 0
128 MB 1.1m 10s 10% 8s 13% 0 0 2.7m 41s 10% 13s 15% 0.32MB 0
256 MB 1.1m 10s 10% 8s 13% 0 0 2.6m 39s 7% 12s 10% 0 0
512 MB 1.1m 9s 8% 8s 5% 0 0 2.5m 39s 6% 12s 6% 0 0
1 GB 1.1m 9s 6% 8s 3% 0 0 2.5m 39s 7% 12s 1% 0 0
2 GB 1.1m 9s 2% 8s 1% 0 0 2.6m 40s 6% 12s 3% 0 0
4 GB 1.0m 9s 1% 7s 0% 0 0 2.6m 40s 5% 12s 4% 0 0

Sort (100 GB)

32 MB failed - - - - - - failed - - - - - -
64 MB failed - - - - - - 19.5m 1.7m 59% 1m16s 30% 59MB 58MB
128MB 7.1m 24s 33% 27s 44% 65 MB 65.7 MB 6.1m 20s 13% 31s 21% 59MB 58MB
256 MB 6.1m 21s 24% 21s 29% 65 MB 64.9 MB 5.6m 22s 11% 21s 13% 59MB 58MB
512 MB 5.9m 20s 20% 20s 20% 63.8MB 62.7MB 5.5m 22s 8% 19s 8% 59MB 58MB
1 GB 5.6m 18s 17% 19s 16% 45.3MB 52 MB 5.4m 22s 10% 18s 4% 59MB 58MB
2 GB 5.5m 17s 12% 20s 10% 43.2MB 51.2 MB 5.3m 22s 6% 17s 2% 59MB 58MB
4 GB 7.6m 13s 8% 27s 4% 0 0 5.3m 22s 6% 17s 2% 59MB 58MB

Table 14: The Impact of JVM Heap Size on k-means
Spark (MEMORY ONLY) Spark (DISK ONLY) MR

JVM 1st-iter %GC sub-iter %GC %cached 1st-iter %GC sub-iter %GC %cached 1st-iter %GC sub-iter %GC
32 MB 4.1m 35% 7.8m 71% 0% 1.9m 15% 41s 14% 100% - - - -
64 MB 4.2m 40% 7.7m 71% 0.3% 1.8m 12% 37s 12% 100% 5.5m 59% 5.5m 59%

128 MB 1.7m 12% 5.6m 65% 6% 1.6m 5% 32s 8% 100% 2.4m 7% 2.4m 7%
256 MB 1.6m 12% 1.2m 13% 27% 1.5m 2% 31s 5% 100% 2.3m 5% 2.3m 5%
512 MB 1.6m 12% 50s 10% 68% 1.5m 1% 29s 2% 100% 2.3m 4% 2.3m 4%

1 GB 1.6m 13% 30s 8% 100% 1.5m 0.6% 29s 1% 100% 2.3m 6% 2.4m 6%
2 GB 1.5m 6% 27s 5% 100% 1.5m 0.3% 29s 0.5% 100% 2.3m 4% 2.3m 4%
4 GB 1.4m 4% 27s 3% 100% 1.5m 0.2% 28s 0.3% 100% 2.3m 3% 2.3m 3%

in Table 15, for Spark k-means, when tasks are killed in subse-
quent iterations, the relative performance advantage of Spark over
MapReduce drops. This is mainly caused by re-parsing of objects
for lost RDDs. In addition, we observe that failures in one iteration
do not affect the execution time of the following iterations, for both
MapReduce and Spark.

4. SUMMARY & DISCUSSION
In this section, we summarize the key insights from the results

presented in this paper, and discuss lessons learned which would
be useful for both researchers and practitioners. Overall, our ex-
periments show that Spark is approximately 2.5x, 5x, and 5x faster
than MapReduce, for Word Count, k-means, and PageRank, re-
spectively. Although Spark’s performance advantage over MapRe-
duce is known, this paper presents the first in-depth analysis of
these performance differences between the two frameworks. Par-
ticularly, we attribute Spark’s performance advantage to a number
of architectural differences from MapReduce: (1) For Word Count
and similar workloads, where the map output selectivity can be
significantly reduced using a map side combiner, hash-based ag-
gregation in Spark is more efficient than sort-based aggregation in
MapReduce. The execution time break-down result indicates that
the hash-based framework contributes to about 39% of the over-
all improvement for Spark. (2) For iterative algorithms such as k-
means and PageRank, caching the input as RDDs can reduce both
CPU (i.e., parsing text to objects) and disk I/O overheads for sub-
sequent iterations. It is noteworthy that the CPU overhead is often
the bottleneck in scenarios where subsequent iterations do not use
RDD caching. As a result, RDD caching is much more efficient
than other low-level caching approaches such as OS buffer caches,
and HDFS caching, which can only reduce disk I/O. Through micro-
benchmark experiments, we show that reducing parsing (CPU) over-
head contributes to more than 90% of the overall speed-up for sub-
sequent iterations in k-means. (3) Since Spark enables data pipelin-

ing within a stage, it avoids materialization overhead for output data
on HDFS (i.e., serialization, disk I/O, and network I/O) among it-
erations for graph analytics algorithms such as PageRank. An ex-
ception to Spark’s performance advantage over MapReduce is the
Sort workload, for which MapReduce is 2x faster than Spark. This
is due to differences in task execution plans. MapReduce can over-
lap the shuffle stage with the map stage, which effectively hides
network overhead which is often a bottleneck for the reduce stage.

We also observe several implementation differences between
MapReduce and Spark. In early versions of Spark (before v1.1.0),
the GC overhead for a shuffle is sensitive to the size of data pro-
cessed by each Spark executor. A sort job can even exceed the
GC overhead limit when more than 10 reduce tasks (with a to-
tal of 64 GB) are processed on an executor (with 32 GB JVM
heap size). This may be due to memory leak related issues.
Since Spark v1.3.0, this GC overhead issue has been fixed and
an executor is now scalable to many reduce tasks. This improve-
ment makes Spark’s thread-based model outperform MapReduce’s
process-based model. Both MapReduce and Spark are now scal-
able to run many tasks during a shuffle, but Spark’s thread model
eliminates the context switching overhead among task JVM pro-
cesses in MapReduce. In addition, through execution time break-
down, we find that MapReduce is more than 10x slower than Spark
for task loading.

Despite architectural and implementation differences between
MapReduce and Spark, we observe a few common characteristics
for the selected workloads on both frameworks. (1) For one pass
jobs like Word Count and Sort, the map stage is often CPU-bound
(with compression for intermediate data) and the reduce stage is of-
ten network-bound. Disk I/O is often not a bottleneck for both map
and reduce stages even when the shuffle selectivity is high (e.g.,
Sort). It means that the reduction of disk spills during a shuffle
might not lead to performance speed-up. Even worse for Spark,
increasing the JVM heap size to avoid disk spills may lead to slow-
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down because of unexpected overhead for GC and OS page swap-
ping. (2) For typical machine learning (e.g., k-means and linear
regression) and graph analytics (e.g., PageRank) algorithms, pars-
ing text to objects is often the bottleneck for each iteration. RDD
caching addresses this issue effectively by reducing the CPU over-
head for parsing. OS buffer cache and HDFS caching to eliminate
disk I/O, are ineffective from this perspective.

To establish the generality of our key insights, we evaluate Word
Count, Sort, and k-means under varying cluster configurations in-
cluding varying the number of disks (for storing intermediate data)
and the JVM heap size. The results indicate that our findings,
in particular, the identified system behavior is not sensitive to
these configurations in most cases: (1) for Spark, k-means using
DISK ONLY RDD caching remains CPU-bound when the number
of disks for storing RDD caches is reduced from 8 to 1 on each
node; (2) for both MapReduce and Spark, the map stage of Sort
is CPU-bound when there is only one disk used to store the map
output on each node; (3) for both MapReduce and Spark, there is
no significant performance degradation for all the selected work-
loads when the JVM heap size per task (using 128 MB input split)
is reduced from 4 GB to 128 MB. In addition to these findings,
we also identified a few cases where the bottleneck changes with
varying configuration: (1) GC overhead becomes a major bottle-
neck when the JVM heap size per task is reduced to be less than 64
MB, for both MapReduce and Spark; (2) disk I/O becomes the bot-
tleneck when we perform disk-based RDD caching on nodes with
extremely unbalanced I/O and CPU capacities.

We evaluated the effectiveness of fault-tolerance mechanisms
built in both MapReduce and Spark, during different stages for each
workloads. A potential improvement for Spark is on the availability
of the block information in case of an executor failure to avoid re-
computation of the portion of tasks that lose the block information
in case of failure.

To the best of our knowledge, this is the first experimental study
that drills-down sufficiently to explain the reasons for performance
differences, attributes these differences to architectural and imple-
mentation differences, and summarizes the workload behaviors ac-
cordingly. To summarize, our detailed analysis of the behavior of
the selected workloads on the two frameworks would be of par-
ticular interest to developers of core engines, system administra-
tors/users, and researchers of MapReduce/Spark.
Developers: The core-engine developer of MapReduce/Spark can
improve both the architecture and implementation through our ob-
servations. To improve the architecture, Spark might: (1) support
the overlap between two stages with the shuffle dependency to hide
the network overhead; (2) improve the availability of block infor-
mation in case of an executor failure to avoid re-computation of
some tasks from the previous stage. To catch up with the perfor-
mance of Spark, the potential improvements to MapReduce are: (1)
significantly reduce the task load time; (2) consider thread-based
parallelism among tasks to reduce the context switching overhead;
(3) provide hash-based framework as an alternative to the sort-
based shuffle; (4) consider caching the serialized intermediate data
in memory, or on disk for reuse across multiple jobs.
System Administrators/Users: The system administrators/users
could have an in-depth understanding about the system behavior
for typical workloads under various configurations, and gain in-
sights for system tuning from OS, JVM to MapReduce/Spark pa-
rameters: (1) Once tuned properly, the majority of workloads are
CPU-bound for both MapReduce and Spark, and hence are scal-
able to the number of CPU cores. (2) For MapReduce, the network
overhead during a shuffle can be hidden by overlapping the map and
reduce stages. For Spark, the intermediate data should always be

compressed, because its shuffle cannot be overlapped. (3) For both
MapReduce and Spark, more attention should be paid to GC and
OS page swapping overhead rather than additional disk spills. (4)
For iterative algorithms in Spark, counter-intuitively, DISK ONLY
configuration might be better than MEMORY ONLY. Because both
of them address the object parsing bottleneck, but the former avoids
GC and page swapping issues by eliminating memory consumption
which makes it scalable to very large data sets.
Researchers: The detailed analysis of workload behaviors char-
acterize the nature of physical execution plans for both MapReduce
and Spark. The researchers can further derive the trade-offs during
the execution of a MapReduce or Spark jobs such as (1) trade-off
between parallelism and context switching, (2) trade-off between
in-memory and on-disk caching, and (3) trade-off between serial-
ization and memory consumption. These trade-offs are the founda-
tions for researchers to explore new cost models [9, 16] for MapRe-
duce and Spark, which could be widely used for optimizations such
as self-tuning jobs and capacity planning on the cloud.
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