P6 - Cause for Emergency.

Gabriele Di Bernardo
Vrije Universiteit
Department of Computer Science
g.dibernardo@student.vu.nl

ABSTRACT

In the last decade, we assisted to a massive adoption of
the Automatic dependent surveillance — broadcast (ADS-B)
[14] on board of modern aircraft. ADS-B is a technology
that allows an aircraft to determine its current position and
broadcast it over the ether. ADS-B messages can be received
from the ground station and by other aircraft: in this way
airplanes in flights can use the ADS-B signals in order to
coordinate each other.

The ADS-B has been created as secondary surveillance
radar system in order to supplement the primary surveil-
lance radar that suffers from some weakness like limitations
at low altitudes and in bad atmospheric and weather con-
ditions (land-based systems) or they are limited to large
commercial or military aircraft (airborne system) [23].

The OpenSky Network is a community-based on off-the-
shelf sensors which continuously collects air traffic surveil-
lance data. [19]. The OpenSky Network project started in
2012 as a research project between Arma Suisse (Switzer-
land), University of Kaiserslautern (Germany), and Univer-
sity of Oxford (UK) with the objective of improving security,
reliability, and efficiency of the airspace utilization by pro-
viding open-access to public of the air traffic control data
collected through the sensors. At the moment the Open-
Sky Network involves thousands of sensors connected to the
internet by volunteers, industrial partners and academic or-
ganizations. OpenSky Network’s sensors continuously col-
lect (mostly) ADS-B messages; the obtained data is kept
by OpenSky, originating, in this way, the largest air traffic
surveillance dataset of its kind in the world. This dataset
is freely accessible by researchers and end-users that can
interact with the collected data for academic and scientific
reasons [18].

In this document, we describe a systematic and scalable
approach in order to identify aircrafts that have been sub-
ject to emergency situations using a portion of the OpenSky
Network dataset. In particular, our goal is to detect flights
that in response to an emergency situation made an emer-

Sleiman Sleiman
Vrije Universiteit
Department of Computer Science
sleiman@outlook.com

gency landing analyzing a portion of the ADS-B messages
collected by the OpenSky Network. In order to have an in-
sight and a better understanding of the reasons that caused
the emergency landing, we exploit the historical archive of
the public Twitter data.

1. INTRODUCTION

After World War II, commercial and civil aviation grew
rapidly, and always more advanced aircraft have been used
to transport millions of passengers around the world. From
the mid-’50s the attention put on aircraft safety and air
traffic control drastically increased [11]. This was possible
also because of new technologies that were designed at first
for military purposes. The technology adopted from the
military context and used for the air traffic control consists
namely in the radar. What today is called primary radar
provides continuous surveillance of air traffic and they can
detect and report the position of anything that reflects its
transmitted radio signals including, depending on its design,
aircraft, birds, weather and land features.

The necessity to identify each aircraft more easily and re-
liably than the primary radar led to the adoption in civil
aviation of another technology developed initially for mili-
tary purposes. This technology is now known as secondary
surveillance radar and it basically consists of a device equip-
ment mounted on board of the aircraft. This device, known
as transponder, is a radio transmitter/receiver that is used
for replying to signals from an interrogator; the interrogator
can be a ground station co-located with a primary radar or
another aircraft.

US Federal Aviation Administration’s Next Generation
(NextGen) upgrade proposes some radical improvements to
increase the capacity and safety of the aviation. In particu-
lar, NextGen proposes to migrate the air traffic control sys-
tem from a radar-based system with radio communication
to a satellite-based one. A key component of this upgrade is
the Automatic Dependent Surveillance-Broadcast (ADS-B)
system. Aircraft equipped with ADS-B transponder broad-
cast ADS-B messages constantly.

ADS-B messages transmit different types of aircraft-related
information; some of the information that are broadcast
from the aircraft are:

e Aircraft position (airborne and surface). This kind
of message contains information regarding the aircraft
current position: namely latitude, longitude and alti-
tude.

o Aircraft identification information like ICAO code or
airline callsign.

o Velocity.
e Emergency/priority status.

The ADS-B equipment is widely adopted in modern air-
craft and in airplanes of the commercial’s fleets; the ADS-B
will be mandatory in the US by 2020 and in Europe from
2017.

At the moment there is also some debate regarding the
adoption of the ADS-B technology since it is not consid-
ered secure namely because the ADS-B transponder emits
messages in an unencrypted fashion [13,17].

The OpenSky Network [7] provides the biggest dataset of
ADS-B messages collected by sensors maintained by volun-
teers. Most of the sensors are located in Europe capturing
more than 30% of the commercial air traffic.

In this paper, we present our work that consisted of ana-
lyzing a portion of the OpenSky Network with the objective
to find flights that for emergency reasons made an emer-
gency landing. The data available to us consists of the mes-
sages of the entire September 2015 (about 200 GB), and a
week of data from September 2016 (about 600GB). In order
to analyze this large amount of data we are going to process
the dataset on a large scale infrastructure; in particular, we
used the SURFSara Hadoop cluster.

2. RELATED WORK

In this section we present an overview of the papers that
has been consulted while approaching our project work.

2.1 Landings & flights schedule anomalies de-
tection

We are interested in detecting flights that had an emer-
gencies and that eventually made an emergency landings; a
good starting point is filter the dataset looking for flights
that emitted emergency messages; however this approach
could not be optimal and we cannot rely exclusively on it
because of the sparsity of the ADS-B messages stored in
dataset. For this reason, we focused on detecting flights that
had an intermediate stop or more. In general, we looked for
flights that present some anomalies when compared to the
regular flight’s schedule. In order to accomplish this, we
used namely the ADS-B position messages.

In the literature, there are many papers and research
projects that describe techniques for detecting anomalies in
moving objects [21,22]. However these approaches cannot
suite well in our context; in particular airplanes can take dif-
ferent trajectories according to the weather condition, size
and type of the aircraft, airlines.

In a very recent paper [15] Junzi Sun, Joost Ellerbroek,
Jacco Hoekstra propose some machine learning techniques in
order to categorize aircraft on a large-scale. They were able
to identify the different flights phases of an aircraft through
clustering algorithms and fuzzy sets theory. In particular
they took as input some features of an aircraft in flight that
can be easily inferred from the dataset (like ICAO, time,
latitude, longitude, altitude, heading and speed) and from
these features they determined the different phases of a flight
(cruise phase, climbing phase or landing phase). However,
as stated in the paper, their approach is not able to separate
flight data into further detailed flight phases, such as taxing,

take-off, landing, and initial climbing/descending; in fact
detecting a landing or a take-off from an ADS-B messages
dataset can be a task extremely tedious and difficult.

We are also interested in detecting landings and we needed
to find a valid approximation that can help us to detect
possible anomalies and emergency landings. In [12] they
described an approximation based on a professional pilot’s
experience that can be used in order to detect a landing
phase of an aircraft.

Starting from the methodology described in [15] and the
approximation illustrated in [12] we designed our own ap-
proximation algorithm to detect landings and possible emer-
gency and unscheduled landings.

3. RESEARCH QUESTIONS

In this project we want to answer the following main ques-
tions:

e How to detect flights that had an emergency during a
certain period by analyzing a set of ADS-B messages?

e Is it possible to detect emergencies’ cause by querying
Twitter’s historical database?

e How we can enhance our basic flight knowledge ac-
quired from the ADS-B in order to get a clearer rep-
resentation of our data and be able to query Twitter?

In the rest of the paper we describe how we approached
these question, our efforts and how we tried to answer to
these research questions.

4. PROJECT SETUP

In this section, we describe the setup and the technologies
used both locally and on the SURFSara infrastructure in
order to analyze the data set throughout multiple phases.

4.1 Data Understanding

As a first attempt to understand the ADS-B dataset we
started exploring the tools and the data provided by the
OpenSky Network sample package on Github [5]. The pack-
age consists of a sample dataset in addition to Java tools
to parse, split and sort ADS-B AVRO files. In addition to
the ADS-B guide provided by Junzi Sun [1] this package
helped us a lot in understanding the structure and the type
of the ADS-B messages especially when it comes to emer-
gency messages.

4.2 Data Exploration

Because of the size of the input dataset we need to pro-
cess it on a large-scale infrastructure. In particular for this
project we are required to analyze this large amount of data
on the SURFSara [10] Hadoop cluster.

In order to explore the data, we needed to be able to iter-
ate fast and constantly having result feedback from our pro-
gram. Therefore we decided to work on a small part of the
dataset and to mimic the SURFSara’s environment locally
by installing Spark and Hadoop HDSF locally in addition to
PySpark and Jupyter Notebook [2] for fast feedback. This
setup not only helped us to explore the data but also to ship
to production quickly.

4.3 Data Processing Phase

The actual data processing phase on the entire dataset
has been performed, as already mentioned, in the SURFSara
infrastructure. The Hadoop cluster at SURFSara consists of
170 data/compute nodes; these nodes have 1370 CPU-cores
for parallel processing. The cluster offers the Hadoop 2.0
core-functionalities:

e HDFS, a Java-based file system that provides scalable
and reliable data storage, and it was designed to span
large clusters of commodity servers.

e YARN (Yet-Another-Resource-Negotiator), provides API

to develop any generic distributed application, enabling
Hadoop to support more varied processing approaches

and a broader array of applications. Yarn it also re-

sponsible for resources scheduling and handling resource
requests. Because of HDFS and YARN we can think

to Hadoop like the distributed operating system for

big data applications.

For our project on top of Hadoop we decided to use Apache
Spark; Spark is an open source cluster computing framework
that offers over 80 high-level operators that make it easy to
build parallel applications. Spark powers a stack of libraries
including SQL and DataFrames, MLIlib for machine learn-
ing, GraphX, and Spark Streaming.

We decided to use Spark first due to its large ecosystem
as newcomers we wanted a framework with enough docu-
mentation and tools. Spark offers a wide array of tools out
of the box or with little configuration like Spark Sql, MLlib
and Spark Streaming. Having this arsenal of tools easily
accessible allows us to shift focus from the infrastructure
to the data. Moreover, the speed and convenience brought
by RDD give Spark an underhand over Hadoop Map Re-
duce [16,20,24].

44 ETL

The Extract, Transform, Load (ETL) phase is the first
phase of our large-scale processing pipeline. In particular we
designed a Spark job that given as input an ADS-B messages
dataset it reorganizes data in a convenient way that can
make it easier to process or visualize it. We want to organize
and correlate the ADS-B messages according to the specific
civil flights for a certain date. In order to accomplish this
several steps are involved.

Since we are mostly interested in detecting emergencies re-
lated to the civil aviation the first necessary step is to under-
stand which aircraft actually belong to an airlines company.
In order to decode each ADS-B messages we used (and we
slightly changed some Java classes in order to use it on top
of Spark) the java-adsb library provide by the OpenSky Net-
work [4]. Each ADS-B message contains the ICAO24 code,
a code that uniquely identify a specific aircraft. There is a
specific type of ADS-B messages named identity messages
that actually provide more accurate information regarding
the aircraft that emitted the message. It is possible to ob-
tain the flight callsign from an ADS-B identification data
frame. From the identification messages we can filter the
entire dataset with messages that contains ICAO24 that be-
long to airlines’ callsigns. A list of airlines’ calligns can be
easily found online; for example we used the one provided
by [3].

For each day of the dataset, we can now understand which
aircraft made a certain flight for a specific airline. We can in-
fer the position messages of each flight for a specific day look-
ing for ADS-B messages that contain the aircraft’s ICAO24
that were emitted after the first identification message for a
certain callsign and before the last occurrence of an identi-
fication message with the same callsign. In this way we can
have a good approximation of the ADS-B messages emitted
by an aircraft when it made a specific flight for a certain
airline.

Once we identified each flight we can immediately check
if one of these flights emitted emergency messages; in the
case that some occurrences of emergency messages have been
found for some flights we produce as output a list of flights
(that emitted at least one emergency message) with their
position messages; if no position messages are available the
positions are approximated by the ADS-B sensor’s coordi-
nate (available to us for each ADS-B message). This output
(in JSON format) contains flights that emitted emergency
messages and each of the callsign (together with the date)
of these flight will be utilized to query Twitter in order to
discover the cause of the emergencies.

The rest of the flights from our dataset that did not emit
any emergency messages will be reorganized in a convenient
way; in particular for each flight we keep its ADS-B position
messages (both airborne and surface). These flights will be
put as output in a compressed format (AVRO compression)
and they will be ready for further processing.

4.5 Anomalies detection

One of the output of the ETL phase is a list of flights
that did not emit any emergency messages. For each of this
flight, we have the ICAO24 of the aircraft, the callsign, the
date and a list of locations indicating the path that took
each flight.

For each of this flight, we want to understand if it made an
emergency stop or in more general if it is path diverged from
the regular schedule; for this task we designed the second
stage of our large-scale pipeline.

4.5.1 Detecting landings

In order to detect landings we implemented an algorithm
starting from the algorithm described in [12]; in particular
they stated that according to a professional airline pilot an
aircraft can be considered in landing phase if it descends
1500 feet. We did some investigations on a smaller portion
of the dataset available to us and we discovered that actually
this could be considered a good approximation. In particu-
lar we identified a recurrent pattern: each aircraft keeps an
average cruise altitude and when it descends 1500 feet (from
its average altitude) it is going to land.

We implemented an algorithm that tries to identify air-
craft landings. In particular given the list of position mes-
sages that belong to a flight the algorithm try to approx-
imate how many stops (and on which airport) the aircraft
made. This algorithm relies on the average altitude of each
aircraft when it made a certain flight: in particular before
executing the algorithm we calculate the average cruise alti-
tude (we consider a certain altitude a cruise altitude if it is
at least of 5000 meters) for each aircraft and for each call-
sign that the aircraft used. In this way we want to infer
the average cruise altitude for an aircraft when it uses a cer-
tain callsign. In order to detect a possible landing beside

airborne position messages we use the surface position mes-
sages and we also take into account if a certain aircraft has
a ”silent” period where no location messages are being sent
after the possible landing. After detecting that an aircraft is
in landing phase we simply take the position message with
the minimum altitude and we approximate as the landing
airport the nearest airport from the last location message
received. This is an approximation that is highly dependent
by the last location message that we have for a certain flight;
in fact, it depends on the antenna location, the obstacles
between aircraft and the antenna, and the distance between
the ADS-B receiver and the destination airport. The algo-
rithm has been designed to detect one or more landings for
the same flight; in this way could be possible to detect a
flight that had multiple stops.

12000 . A||t|tude / TLn'Ime

10000

8000 .

6000 | 1

4000 .

2000 E

0 | | | .

0 10000 20000 30000 40000 50000

+1.44359e9

Figure 1: Altitude for aircraft 406d8e during an en-
tire day from September 2015.

The algorithm considers as departure airport the nearest
airport from the first location message received for a cer-
tain flight. The nearest airport is calculated as the distance
between two coordinates with the Haversine formula.

Test the correctness of this algorithm is not an easy task;
however some tests have been performed. In particular us-
ing a list of civil airports in Europe (without small and
secondary airports) and using the dataset from September
2016 we checked the outcome of the algorithms using fligh-
tradar24.com [9]; in particular for each day of the dataset we
ran the algorithm and we checked if the departure and des-
tination airports produced by the algorithm for each flight
are the same of those reported by flightradar24. The algo-
rithm detected a correct departure airport and destination
airport for up to 76% of daily flights (considering flights that
the algorithm reported having only one final stop). We be-
lieve that this algorithm can be a good approximation when
there is abundant information for each flight. Its simplicity
allows the algorithm to be executed in a fast way when it is
required a good approximation in the minimum amount of
time (for example in streaming application). However since
it is a naive implementation it can be error-prone in cases
where the messages in the input dataset are drastically af-
fected by noise or where the data is really sparse and not
continuous.

The described algorithm has been used in the anomalies
detection phase of the large-scale pipeline of this project.
The flights detected by the algorithm with stops number
different than two are put in output in JSON format and
their callsign will be used to query Twitter in order to un-
derstand if there is an actual anomaly for each flight, and
in that case understand the causes of the emergency.

4.5.2 Detecting anomalies from flights schedule

After running the landing detection algorithm and put as
output the flights for which the algorithm has detected more
than two stops we can try to cluster the remaining flights
(the flights the algorithm detected exactly one departure
airport and one landing airport) on daily basis. In order to
accomplish this the different flights are clustered for each
day of the week. In particular since we have determined
the departure and destination airport we can learn a good
approximation of the actual flights schedule. We clustered
each flight per day of the week and in this way anomalies
in schedule can be easily detected. The flights that present
anomalies in the schedule then are reorganized in JSON for-
mat and put in output by the Spark application: the au-
thenticity of the anomalies and the possible causes will be
inferred by a Twitter query on the tweets historical dataset.

This approach can be work properly only if the landing
detector algorithm produced an approximately good result.

4.6 Data Enhancement Visualization Phase

At this stage the data is small enough to run it locally
thus the technology used in this phase doesn’t really matters
however we decided to use GoLang to crawl the flight data
and reduce the noise and positions. As for the user interface
we used Vuejs as a framework in addition to a small set of
Javascript tools.

S. RESULT VISUALIZATION & ENHANCE-
MENT

After running the large-scale pipeline on the input dataset
we ended up with some JSON files containing an array of
flights that emitted an emergency message or flights that the
implemented algorithm detected some anomalies during the
covered period. The first attempt to plot this dataset was
to draw a polyline representing the flight path on Google
Maps as illustrated in figure 1.

Netherlands

Germany

Belgium

Luxembour, Czelk Re|fholic

Figure 2: First flight path plot.

The first plot implies that either the results are wrong or
the data still needs some filtering. In this section we describe
the process we use in order to improve the data visualization
of the results achieved by the data processing phase.

5.1 Data Enrichment

In order to improve the details related to each flight (like
the departure, destination, duration and airline) we created

a web crawler that visits the plane finder website [8] and ex-
tracts the needed flight attributes. In some cases the page
returned a message containing the alternative callsign of the
flight so we needed to crawl the new callsign data and ap-
pend it to the flight struct we built with the crawled data.

RT @greg787: There's a supposed hole in the
aircraft. That's what the "ground mishap® was.
@lufthansa @Lufthansa_USA #DLH441

Netherlands

Captain making his way down to check things

out. @Lufthansa_USA #DLH441
https://t.co/omEvTcVv40
il —=

Track FlightDLH441 /[DLH441]

|George Bush Intercontinental (IAHj —|Frankfurt Main (FRA)|

Aircraft Airline Journey time
A388 09h45m)|
Flight no. Callsign Arrival day
DLH441 DLH441 Next day
Service type Seats Freight class
Normal passenger 526 Containers
Freight capacity Passenger classes

15.3 tons First Class, Economy, Business Class, Shuttle

Figure 3: Attributes extracted when crawling.
Figure 4: Tweets mapped to a flight
Following the crawling process we decided to build a query
to search Twitter’s Historical API [6]. The query is struc-
tured as follows: At the first stage we split the location into two parts (be-
fore and after) the first emergency timestamp (when it is
{ present); then we sort the locations accordingly the post-
"publisher": "twitter", emergency locations ascending by timestamp and the pre-

"streamType": "tr?CLF—VQH > emergency locations descending by timestamp.
"dataFormat": "original", After splitting and sorting the locations we iterate over
"fromDate": "201609010000", each location and break when we found a location that is

"toDate": "201601300000",
"title": "flight-emg-2016",
"serviceUsername": "Flight",
"rules": [5.3 Noise Filtering

{"tag": "sc.luawtzk" ,"value": "SqUE}Wk. (7700 or 7§OO) "}, The trip isolation algorithm improved the plot output sig-
{"tag":"airline","value": "{airlinel} {airline2}.."},pificantly however we can notice some irregularity in the

{"tag":"flight-DLH441","value": "DLH441"}, location logs that affects the integrity of the flight path.
{"tag":"flight-{callsign}","value":"{callsign}"},

{"tag":"flight-{callsign}","value":"{callsign}"},

emitted later than 20 minutes of the previous location in
order to isolate the emergency trip.

| Preserve log

© V¥ top v
[HMR] Vue component hot reload shim applied.
| Fri, 23 Sep 2016 @6:12:36 GMT 50.22587585449219,7.192936047471217
€ Fri, 23 Sep 2016 06:12:37 GMT 50.225162829382946,7.19597068992821
@) Fri, 23 Sep 2016 06:12:37 GMT 50.22477722167969,7.197562769839638
©) Fri, 23 Sep 2016 06:12:39 GMT 50.22330073987023,-2.5258162214949325
Fri, 23 Sep 2016 06:12:40 GMT 50.222991943359375,7.205296566611842
@ Fri, 23 Sep 2016 06:12:41 GMT 50.22200038168697,7.209258208403717
© Fri, 23 Sep 2016 06:12:42 GMT 50.221710205078125,7.2108620091488485
"tag":"flight-DLH441", Fri, 23 Sep 2016 @6:12:42 GMT 50.22138977050781,7,212307578638979
"id":5042011855517844061 | € Fri, 23 Sep 2016 ©6:12:43 GMT 50.22074036679025,7.215048300253378
}] © Fri, 23 Sep 2016 06:12:44 GMT 50.219995530985166,7.218314505912162
€ Fri, 23 Sep 2016 06:12:45 GMT 50.21971621755826,7.2195022170608105
Fri, 23 Sep 2016 06:12:46 GMT 50.21905517578125,7.222282008120888
5.2 Trip Isolation | Fri, 23 Sep 2016 @6:12:46 GMT 50.21868896484375,7.2238721345600325
| © Fri, 23 Sep 2016 86:12:47 GMT 50.21831965042372,7.225515004750845

When the results are ready we download the tweets and
map each one the a flight depending on the response match-
ing rules.

"matching_rules"E] [{

After knowing the departure and destination we noticed
that some flights actually contain multiple trips; in partic-
ular after arriving at destination some flights come back to
the original destination airport keeping the same callsign.
For this reason we needed to isolate the trip that contains
the emergency messages in order to have a proper represen-
tation of the flight.

Knowing that the positions from the 2016 data set are
dense with an average of 80 messages per second we decided
to implement a rather simple algorithm which goes as fol-
lows.

Figure 5: Location noise.

To filter the noise we measured the distance between each
position using the Haversine formula then we filtered each
location on the following basis

f(z) = distance > (currentPositionTime—previousPositionTime)*
(avaragePlaneSpeed + thresholdFor Emergency)

@ lifeguard / medical
B ©02n05m

Franz Josef Sirauss (MUC) | — Heathrow (LHR)

Ireland

ENGLAND
Netherlands

A
Germany

Belgium

Luxembourg

Guernsey
Jerse

Figure 6: MUC, LHR trip plot after noise reduction

6. CONCLUSION

We tried to detect anomalies and their causes and for some
flights (mostly from messages of the dataset from Septem-
ber 2016) we actually accomplished in this task. However
we still have some issues that we would like to solve like de-
tecting noisy emergency messages. One solution for detect-
ing noisy emergency messages is by monitoring the behavior
of the plane after the emergency message, another solution
could be training a model from a set of emergency flights
and regular flights.

Noise is also an issue for the detecting landings algorithm;
in fact because of some noisy position messages a false-
positive intermediate stop between departure and destina-
tion airport can be detected.

Our implementation was able to identify some anoma-
lies and some emergency situations and we found evidence
on those on Twitter; however our implementation and in
particular our landing detector algorithm and anomalies in
schedule detector algorithm made some assumptions that in
pair with the sparsity of the input dataset can produce a
series of false positive.

We truly believe that with a major adoption of the ADB-
S sensors on board of aircraft and with a greater spread
of ADS-B receiver throughout Europe this will lead to new
scenarios in this kind of analysis that will have a strong
impact on research world and in general in improving human
lives.

7. ACKNOWLEDGMENTS

We would like to thanks Peter Boncz, and Hannes Miihleisen

for preparing and teaching this course. We have to say it is
an unusual and challenging course that delivers knowledge
in a very realistic and motivating method.

8. REFERENCES
[1] http://adsb-decode-guide.readthedocs.io/en/latest.
[2] http://jupyter.org.
[3] http://openflights.org/.
[4] https://github.com/openskynetwork/java-adsb.
[5] https://github.com/openskynetwork/osky-sample.

[6
[7
[8
[9
[10

]
]
]
]
]
(11]

(12]

(13]

(14]

(15]

(22]

https://gnip.com/historical/.
https://opensky-network.org.
https://planefinder.net/data.
https://www.flightradar24.com.
https://www.surf.nl.

Natca - a history of air traffic control,

http://www.natca.org/images/natca_pdfs/publications/atchistory.pc

visited october 2016.

Hugo Wallenburg Alexander Renz-Wieland. Airport
quality: holding and go-arounds.

Robert Mills Donald McCallie, Jonathan Butts.
Security analysis of the ads-b implementation in the
next generation air transportation system.
International Journal of Critical Infrastructure
Protection, 4:Pages 78-87, August 2011.

P.R. Drouilhet, G.H. Knittel, and V.A. Orlando.
Automatic dependent surveillance air navigation
system, October 29 1996. US Patent 5,570,095.
Jacco Hoekstra Junzi Sun, J. Ellerbroek. Large-scale
flight phase identification from ads-b data using
machine learning methods. 7th International
Conference on Research in Air Transportation, June
2016.

Umar Farooq Minhas Limei Jiao Chen Wang Berthold
Reinwald Fatma Ozcan Juwei Shi, Yunjie Qiu. Clash
of the titans: Mapreduce vs. spark for large scale data
analytics.

Sameer Alam Leon Purton, Hussein Abbass.
Identification of ads-b system vulnerabilities and
threats. Defence and Security Applications Research
Centre, University of New South Wales Australian
Defence Force Campus, ACT 2600, 2010.

Markus Fuchs Matthias Schéfer, Ivan Martinovic.
Opensky: A swiss army knife for air traffic security
research. Digital Avionics Systems Conference
(DASC), 2015 IEEE/AIAA 34th, 2015.

Vincent Lenders Ivan Martinovic Matthias Wilhelm
Matthias Schafer, Martin Strohmeier. Bringing up
opensky: a large-scale ads-b sensor network for
research. IPSN ’14 Proceedings of the 13th
international symposium on Information processing in
sensor networks, pages Pages 83-94, 2014.

Rohan Arora Satish Gopalani. Comparing apache
spark and map reduce with performance analysis
using k-means. International Journal of Computer
Applications.

J. Eriksson Y. Wang G. Forman X. Liu, J. Biagioni
and Y. Zhu. Mining large-scale, sparse gps traces for
map inference: Comparison of approaches. In
Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
page Pages 669-677, 2012.

Sangkyum Kim Hector Gonzalez Xiaolei Li,

Jiawei Han. Roam: Rule- and motif-based anomaly
detection in massive moving object data sets.
Proceedings of the 2007 SIAM International
Conference on Data Mining.

Jinglu Qiao Yan Zhang. Ads-b radar system.

August 19 2008. US Patent US 7414567 B2.

Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. Spark:

cluster computing with working sets. HotCloud,
10:10-10, 2010.

