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ABSTRACT

Due to growing air traffic, a new air traffic management
system, ADS-B, is about to be fully adapted by all kinds
of aircraft. Also helicopters start to use ADS-B for commu-
nication. OpenSky Network provides a data set containing
a large amount of ADS-B messages from September 2015,
which covers selected areas of Europe. The purpose of this
paper is to identify helicopters and especially rescue heli-
copters in that data set. The presented classification algo-
rithm coarsely filters out aircraft that surely are not heli-
copters, and analyzes the flights of the remaining aircraft to
identify helicopters. The classifier focuses on typical heli-
copter flight patterns, especially during take off and landing
sessions, which is particularly challenging because signals
are often lost during these phases in flight. This gives a
remaining set of about 62 helicopters which were compared
to hospitals to find rescue helicopters. Unfortunately, no
rescue helicopters could be found using this data set and
our algorithms. However, the research remains an interest-
ing exercise in dealing with large quantities of spare ADS-B
data. The outcome is a visualization of all helicopters in
Europe that were found, and the areas their flights covered
during the time span of the data set.
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1. INTRODUCTION

With air traffic ever growing, new ways of managing it are
required. One of the new tools in doing this is the ADS-B
protocol, short for Automatic Dependent Surveillance. The
main idea behind it is that aircraft locate themselves us-
ing GPS, and broadcast this location to other aircraft and
control centers. This allows the location of aircraft to be
detected more accurately than with radar. Unlike radar,
ADS-B also allows a receiver to gather much more infor-
mation than merely the position of an aircraft. Among the
broadcasted information are an aircraft’s speed, heading,
rate of climb, identification, and more.

ADS-B will be mandatory for aircraft in the European
airspace by 2020 [7]. Also, ADS-B messages are not en-
crypted, which means anyone with a sensor can record mes-
sages sent in its vicinity, and decode them. This makes it
possible to analyze large amounts of detailed aircraft flight
data for a wide range of research purposes.

The goal of this paper is to find out if ADS-B messages can
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be used to identify rescue helicopters in Europe, determine
where they are stationed and which areas are (not) covered
by these helicopters. Information like this could provide
an international overview of resources that can be shared or
should be relocated elsewhere. This is relevant in a continent
like Europe where many countries are collaborating.

The remainder of this paper is structured as follows. In
section 2 related work is discussed, while in section 4 the
structure and content of the data that we work with is ex-
plained in detail. Section 3 discusses the research questions,
section 4 describes the data that we have used, section 5
describes the steps that were taken to identify rescue he-
licopters, and is followed by section 6 which describes the
experiments that were done for this research. Finally, we
conclude the paper in section 7.

2. RELATED WORK

Our research builds on previous work related to ADS-B,
large scale data engineering, and the combination of the two.
This section briefly summarizes related research.

2.1 ADS-B

ADS-B is a protocol meant to replace surveillance radar
technologies [5]. The main philosophy behind ADS-B is
that aircraft locate their own position using GPS, and then
broadcast this position to other aircraft and surveillance sta-
tions. This allows for more accurate positioning [4] than
radar. ADS-B messages are unencrypted, and can in carry
much more information than just location, such as speed,
altitude or identification.

2.1.1 OpenSky

Because ADS-B messages are unencrypted, anyone with
a sensor can record them, and analyze them. OpenSky [5]
is a network that does just this. The goal of OpenSky is
to collect ADS-B messages so that they and others can use
them for scientific research. The network is not just run by
researchers, but also by volunteers. Anyone with a compat-
ible sensor can contribute, thereby increasing the size of the
total network.

2.1.2  Flight Phase Identification

In [6], Sun et al. show that analysis of a large number of
ADS-B messages is feasible using a combination of machine
learning methods and fuzzy logic. The goal of their research
was to identify the various phases of a flight (lift-off, cruise,
landing). Particularly relevant to our research is how they
dealt with the often incomplete data that ADS-B messages



provide, and how they cluster the extracted data into flights.

The stream of ADS-B messages is converted into a stream
of flight data, where data points often have missing val-
ues for various fields (such as position, altitude or veloc-
ity). To manage the large amount of incomplete data, a
NoSQL database is used rather than a traditional relational
database. The resulting flight data is clustered into flights,
using the DBSCAN and BIRCH clustering algorithms. Fi-
nally, fuzzy logic is applied to determine the different phases
of each flight.

Although the ultimate goal of the research is different, Sun
et al. faced many of the same challenges that are met when
identifying helicopters in a large set of ADS-B data. To
identify helicopters, the first crucial step is to process the
raw data and cluster the resulting flight data into flights,
analog to [6].

2.2 Spark

For large scale data analysis, the use of a computer cluster
is usually required, typically using Hadoop. Many different
paradigms for working on these clusters have been proposed
and are currently being used. One of these is Spark [8]. It
differentiates itself from MapReduce and its variants in that
it offers a less rigid paradigm, without giving up scalability
and performance. In fact, because it tries to do as much
work in memory rather than on disk, it is often faster than
MapReduce.

The core concept of Spark is that of resilient distributed
data sets (RDDs). An RDD is an abstraction for a read-only
in-memory collection, distributed over a cluster, that can be
accessed as if it were in one place. RDDs are called resilient
because they can be rebuilt in case a node in a cluster fails.
RDDs support a wide range of parallel operations that can
be chained to transform one set of data into another, in a
fashion that is often more intuitive than MapReduce.

3. RESEARCH QUESTIONS

The goal of this research is to identify rescue helicopters
and determine their coverage by analyzing a large set of
ADS-B data. The following research questions arise:

1. Where are rescue helicopters located within the range
of our data?

2. What is the effective coverage of those rescue heli-
copters?

To answer the first question we will first need to identify
helicopters in the data set, then determine which of those
are rescue helicopters, and finally determine where they are
stationed. When the first question is answered, we need to
determine where the rescue helicopters fly from where they
are stationed.

In order to do this, specific software to work with large
scale data is required. For this project, Spark is chosen, for
its flexible paradigm of transforming RDDs and its relatively
high performance. The results are presented using a web
based visualization that shows the location of helicopters,
and their flights.

4. DATA

This research is done on three different sets of data. The
first is a set of mode S (in particular ADS-B) messages col-
lected by sensors from OpenSky Network [5], the second and

Field Type
Sensor type string

Sensor latitude double
Sensor longitude double
Sensor altitude double
Time at server double
Time at sensor double
Raw message string
Sensor serial number int
RSSI packet double
RSSI preamble double
SNR double
Confidence double

Table 1: Schema of the OpenSky data set

third are locations of helipads and hospitals extracted from
OpenStreetMap [2].

4.1 OpenSky Network Data

The main set of data is a collection of ADS-B messages
broadcasted by aircraft and recorded by sensors scattered
across Europe. The set spans the month of September in
2015, and is about 200GB in size. The data is compressed
and stored in the avro format. Table 1 shows the schema
of data in this set. The raw message is the ADS-B mes-
sage encoded as a binary string. The other fields are mostly
metadata about the sensor and the time of recording.

Figure 1: Scatter plot of a sample of recorded positions

The data set consists of a total of about 2.3 billion mes-
sages, from about 27 thousand different vehicles. As can be
seen in figure 1, the coverage of the data is rather limited.
This has several consequences. First, it will not be possible
to determine the coverage of rescue helicopters for all of Eu-
rope, but only those locations that are actually covered by
the data set. Second, only partial flights can be constructed
from the data for aircraft that fly outside the boundaries of
the data coverage. Our methods will have to be able to cope
with this.

4.1.1 Types of messages

Technically speaking, the messages in data set are not
strictly ADS-B messages, but mode S messages, of which



ADS-B is a subset. In the remainder of the paper we will
use the term ADS-B for all mode S messages, as the over-
whelming majority are ADS-B messages.

Mode S (and ADS-B) messages come in different types.
The ones relevant to our research are briefly discussed below.
Other messages include, among others, emergency messages
and status messages.

1. ADS-B aircraft identification: reports general informa-
tion about the aircraft, such as the type of aircraft

2. ADS-B airborne position: reports the position and the
altitude of the aircraft while it is in the air

3. ADS-B surface position: reports the position of the
aircraft while it is on the ground

4. ADS-B airborne velocity: reports the velocity of the
aircraft while it is in the air, as well as its heading and
its rate of climb

5. (Comm-B) altitude reply: reports the altitude of an
aircraft

Table 2 shows the distribution of message types in the
data set. As can be seen, most messages by far are either
airborne velocity messages or airborne position messages.
The remaining messages are mostly identification messages,
Comm-B altitude replies and ADS-B messages that the de-
coder was not able to decode into anything meaningful. The
relatively high amount of identification messages makes it so
that many aircraft can already be identified using their cat-
egory descriptions. The high amount of airborne messages
means that there should be enough flight data in the covered
areas to model flights for the remaining aircraft.

Type of message %
Airborne position 42.25
Airborne velocity 42.25
Aircraft identification 5.05
Comm B altitude reply 2.77
Aircraft status message 1.16
Comm B identification reply  0.62
Surface position 0.59
Airborne airspeed 0.22
Emergency 0.15
Other 4.94

Table 2: Message types in the ADS-B data

4.2 OpenStreetMap Data

OpenStreepMap provides open source map data with very
detailed information which can be used for the creation of
special maps. It is strongly enriched by users. To put he-
licopter position messages into context, this map data is a
valuable source. We obtained the map data from Europe
which is about 19GB in a compressed format. The map
data consists of nodes, ways and relations.

Nodes define landmarks for any kind of object at a specific
position. Ways define boundaries for a specific object and
relations as a poly-line and relations are a multi-purpose
structure to combine ways and nodes with restrictions. Each

of these entities can be enriched with tags which can be any
kind of key-value pair.

We filtered the map data on ways and nodes to create two
sets, one containing locations of hospitals and one containing
all helipad locations. These are shown in figure 2a and 2b.

5. PROJECT SETUP
5.1 Analyzing Data

To better understand the data that we were working with,
a Spark job was run on the entire data set that analyzed it.
The following information was then extracted:

1. The number of recorded messages

2. The number of aircraft

3. The distribution of messages over time

4. The type of messages and their distribution
5. A sample of reported positions

6. A sample of reported altitudes

7. A sample of reported velocities

Some aircraft send identification messages, with which
they report the category of aircraft that they belong to.
Helicopters is one of those categories. Because not all air-
craft identify themselves these messages are not sufficient
for identifying all helicopters in the data set. However, they
still provide a valuable source of information for identifying
other helicopters. Using these identification messages, the
following information was also acquired:

8. Reported altitudes of helicopters

9. Reported velocities of helicopters

The results of 1 to 5 are discussed in section 4. Figure 3a
and 3b show the distribution of the altitudes and velocities
reported by all aircraft, whereas figure 3c and 3d show the
same for just the helicopters. As can be seen, most aircraft
fly between 10km and 12km, at a speed between 200m /s and
270m/s. Helicopters however rarely fly higher than 3km or
faster than 90m/s. This suggests many aircraft can already
be excluded by looking at how high and fast they fly.

5.2 Initial Filtering of Data

Because we are only interested in helicopters, the majority
of the data is irrelevant to us. Therefore, the first step in
finding rescue helicopters consists of excluding all ADS-B
messages from aircraft that are definitely not helicopters. A
Spark job was run that does this in the following way:

1. Messages are filtered so that only those that are of use
for finding helicopters remain. This means that among
others ADS-B emergency messages are excluded. Be-
cause most messages are actually relevant messages,
this is only a minor improvement regarding the amount
of messages.

2. Messages are grouped by aircraft, and groups are fil-
tered out when one of the following conditions is true:
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Figure 2: OpenStreetMap Data
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e The aircraft sent a message reporting an altitude
above 3500 meters

e The aircraft sent a message reporting a speed
above 100 meters per second

e The aircraft sent an identification message report-
ing a category other than ‘Rotorcraft’ or ‘Uniden-

tified’

e The aircraft sent a message of the military squit-
ter type, meaning the aircraft is a military aircraft

3. The groups are flattened, and each data point is con-
verted into CSV format containing the raw ADS-B
message, sensor latitude and longitude and a times-
tamp. Other information such as the identifier of the
sensor that recorded the message are left out, because
they are irrelevant for identifying helicopters. This
way, the data set becomes even smaller.

The resulting data set comprises of about 2.5 million mes-
sages from 1075 aircraft. The size is 160MB, compared to
over 200GB for the original data. Not only does this make
future analysis far more efficient, it also doubles as an im-
portant first step in identifying helicopters.

5.3 Finding Flights

Because not all aircraft report whether they are a heli-
copter or not, flight data for the remaining aircraft has to
be analyzed to identify helicopters. Also, the flights of all
helicopters are analyzed to identify rescue helicopters. This
section explains how individual flights are identified, and
how they are analyzed to determine (rescue) helicopters.

5.3.1 Extracting Flight Data

The first step towards identifying flights is to convert the
stream of sensor data into a stream of flight data containing
the aircraft’s icao, timestamp, position, altitude, velocity,
rate of climb and heading. Each point of flight data is rep-
resented using a FlightDatum object, which has the schema
specified in 3. Note that a flight data point does not nec-
essarily have data for all fields. This is because there is no
message that contains all the required data, and not all air-
craft send all types of messages. The stream is created as
follows:

1. The set of messages are filtered so that only messages
containing flight data are left. These types of messages
include airborne velocity, airborne position, airspeed,
surface position, Comm-B altitude and altitude mes-
sages.

2. All messages are grouped by aircraft, and each group
is then sorted on time. Sorting on time is necessary
because the position of an aircraft is encoded using
two position messages.

3. Each group of messages is mapped to a group of Flight-
Datum objects. This results in a stream of around one
or two FlightDatum objects per second.

4. Each group of FlightDatum objects is clustered into 5
second windows, and all FlightDatum objects in each
window is then merged into single FlightDatum ob-
jects. This leaves us with more complete individual
FlightDatum objects, and overall less flight data points.

One point of flight data for every 5 seconds should still
be sufficient to analyze a flight.

Field Type Unit
ICAO address string -
Timestamp double S
Latitude double  deg
longitude double  deg
Altitude double m
Heading double  deg
Velocity double m/s
Rate of climb  double m/s

Table 3: Schema of the FlightDatum class

5.3.2  Clustering

After creating streams of flight data for every aircraft,
flight data are clustered into individual (partial) flights. This
is done in two steps, the first of which is looking at the time
between consecutive flight data points. For each aircraft, the
flight data are iterated upon in order of time. A list of pre-
viously visited flight data points is kept, as well as the time
of the last FlightDatum. Each time that the time between
the current FlightDatum and the last is one more than 20
minutes, all the previous flight data points are grouped into
a single flight, and the list of previous visited flight data is
cleared.

Some aircraft in the data set did not report any location
data. Therefore, flights were generated that did not contain
any location data. These are not of any use to us, and were
therefore discarded. Also any (partial) flights that lasted
for a very short time were filtered out, as they proved to be
useless for any meaningful analysis. These flights belong to
aircraft that entered the area covered by the sensor for only
a very short time.

5.3.3 Determining Landings

The second step in determining flights is splitting the
previously generated flights on moments that the aircraft
landed. This is primarily done by looking at the altitude
during the flight. If it drops under 30 meters, the aircraft is
considered to have landed. The reason 0 was not chosen, is
because sensors may not have line of sight on aircraft at low
altitudes. Most of the times the landing would then have
already been correctly identified by splitting flight data on
time, but may fail in case a helicopter would land for a short
time, and then quickly take off again.

Not all aircraft report altitude data, so for those aircraft a
different method is required. Rather than looking at altitude
of a flight, the position of the aircraft is considered. For each
minute in time, the central position of all reported positions
during that minute is calculated. If the distance between the
central position and any of the reported positions is less than
8 meters (the effective maximum error of GPS equals 7.8 at
95 % confidence level [3]) for the entire minute, the aircraft
is deemed to be standing still, and thus most likely on the
ground. In rare cases it may be a helicopter hovering above
ground, but looking at all positions for an entire minute
rather than just two data points should make this an unlikely
event.



The process resulted in 1390 flights, for 179 aircraft. Note
that we are left with about 6 times less aircraft than after
the initial filtering of sensor data. This has to do with how
scattered the area covered by the sensors is. Many aircraft
only remain in this area for a short time, resulting in very
short flights within that area, which are thus filtered out.
Also, as mention before, some aircraft don’t report location
data at all.

5.4 Classifying Aircraft

Now that flights have been generated for each aircraft,
we can try to identify whether an aircraft is a helicopter or
not, and whether a helicopter is a rescue helicopter or not.
Several characteristics of a flight typical for helicopters were
identified:

e Helicopters may hold position while airborne (hover),
while airplanes cannot

e Helicopters may fly at lower speeds than airplanes

e Helicopters may ascend or descend at higher angles
than airplanes

o Helicopters generally land at helipads, while airplanes
land at airstrips

To check whether an aircraft has been hovering during
a flight, the flight data of a flight is clustered by 30 second
windows. If the positions during this time span did not devi-
ate more than 10 meter, and the aircraft had been airborne,
it is determined that the aircraft was hovering. To check
whether an aircraft has been flying at low speed, velocity
and altitude data is checked. If altitude is above 0 meters,
and velocity below 15 m/s, it is marked as low speed flying.
15 m/s was chosen as it is well below the stall speed of a
light airplane like the Cessna 172 (around 20m /s) [1]. At
first sight determining whether an airplane is hovering may
seem unnecessary since the ground speed of an aircraft is
also taken into account. However, for flights that do not
contain velocity data this can be a useful backup method.

Checking whether an aircraft ascends or descends like a
helicopter, the angle between rate of climb and velocity is
calculated. When this angle is higher than 50 degrees, we’re
likely looking at a helicopter. Finally, to check whether an
aircraft landed at a helipad, the location of the start and end
of each flight is compared to known locations of helipads. If
the aircraft was below 100 meters, and within 300 meters,
it is marked as landing at a helipad. The extra margin in
altitude and distance is used in case the aircraft loses line of
sight with the sensor because of its low altitude.

Of the 179 aircraft we generated flights for, 117 could not
be identified as helicopters by their identification messages.
Their 445 flights are analyzed for helicopter characteristics.
If at least two of the conditions hold true on one or two flights
of the aircraft, that aircraft is classified as a helicopter.

No helicopter behavior was detected for any of the 117
aircraft. Note that although we have not managed to detect
any helicopters among the unidentified aircraft, this does not
mean the classification does not work. As will be discussed
in section 6.1, the classification method has been evaluated,
and proven to be able to detect helicopters. However, the
classifier is not able to detect all helicopters and there were
relatively few flights to analyze for each unidentified aircraft,
80 it’s possible some helicopters were not identified.

Figure 4: Reported positions from identified helicopters.

5.4.1 Identifying Rescue Helicopters

After identifying helicopters, either by looking at identi-
fication messages or their flight patterns, rescue helicopters
can be found. This is done using a method similar to deter-
mining whether aircraft land at helipads. However, instead
of comparing the start and end locations of flights to those
of helipads, they are compared to known locations of hospi-
tals in Europe. If the helicopter is detected to land at one
of the hospitals, it is classified as a rescue helicopter.

In the set of 62 helicopters, no rescue helicopters could be
found. This can have a number of reasons. First of all, as
the coverage of the data set is rather poor, many flights are
not complete. Partial flights are not a problem per se, but
we do need data on either landing or lift-ofl so we can deter-
mine where a helicopter is stationed. Unfortunately, many
flights started and ended at rather high altitudes, meaning
that we cannot determine this. Another problem is the fact
that 62 helicopters is in fact not a very large number of air-
craft, and it’s thus not unreasonable that there are no rescue
helicopters among them in the first place.

5.5 Visualization

As a final result we produced an interactive visualization
of the helicopters that were found. This includes first a map
which provides an overview of all helicopter flights and an
indicator of airspace coverage and, secondly, a detailed visu-
alization for flight trajectories per helicopter, including an
altitude per distance plot per flight. This was mainly done
by defining templates with Python and injecting those into
a JavaScript library called Leaflet to produce maps with the
helicopter data. The underlying map is based on Open-
StreetMap with an overlay from CartoDB.

6. EXPERIMENTS

Apart from writing Spark jobs to find rescue helicopters,
an experiment was performed. The goal of this experiment
was twofold: first to find the best parameters for the heli-
copter classification algorithm, and finally to evaluate this
algorithm.

6.1 Flight Classification Evaluation

To evaluate how well the method for helicopter classifica-
tion works, a separate Spark job was written that classifies



two sets of aircraft: one that are known to be helicopters,
and one that are known to be anything but helicopters or
unidentified aircraft. These test sets were created by looking
at identification messages sent by aircraft. The classification
method was then applied to both sets, and the amount of
(false) positives and (false) negatives were recorded.

| Positive Negative
True | 12 (20.7%) 249 (98.8%)
False | 3 (1.2%) 46 (79.3%)

Table 4: Results of the classifier evaluation

Table 4 shows the results of the evaluation. As can be
seen, only about 20% of all helicopters are classified as he-
licopters, while about 1% of non-helicopters are marked as
helicopters. This can perhaps be improved by using bet-
ter parameters for classifying helicopters, although as men-
tioned the evaluation method has already in fact been used
in finding optimal parameters. Another possible reason for
the poor results is the low coverage of the ADS-B data.
Lift-off and landing is missing for many of the flights, which
means that a lot of aircraft cannot be detected at many
of the known helipads. It also makes detecting high angle
ascends or descends less likely.

Note however that in fact more than 20% of the helicopters
are eventually identified, as this method is only used on those
aircraft that do not send identification messages. Helicopters
that broadcast a ‘Rotorcraft’ category description are always
correctly identified as helicopters.

7. CONCLUSION

With our setup, we were not able to find any rescue heli-
copters in OpenSky’s September 2015 data set. This means
we cannot answer our two research questions. Although the
data set contains messages for 27,000 aircraft, only 179 of
them potentially were potentially helicopters and had useful
flight data. 62 identified themselves as helicopters, while the
remaining did not broadcast their vehicle type. Although
we have created an algorithm that detects helicopters with
moderate success, none of these could be classified as heli-
copters. This low number of helicopters is one likely cause
for the fact that no rescue helicopters could be identified.

So the first question that should be answered is why the
number of identified helicopters is so low relative to other
aircraft. One explanation is that helicopters generally have
a much shorter range than airliners. An aircraft flying from
Paris to Singapore will pass the area of OpenSky’s sensor
network, even though that aircraft is not stationed within
the same area. This also explains why already so many
aircraft are filtered out during the first filtering step de-
scribed in 5.2. Another possibility is that in 2015 planes
were perhaps outfitted with ADS-B transponders relatively
often compared to helicopters. Further research is required
to verify whether this is the case.

7.1 Future Work

There are a few suggestions for future work. The first
would be to work with a more recent set of ADS-B data that
has better coverage over Europe. Denser data makes our
classification methods more reliable, and allows for detection
of helicopters that are stationed in locations that are not
covered by the 2015 data.

Another obvious improvement could be done on the clas-
sification of helicopters. There may be more features of a
helicopter flight that distinguish it from one of an airplane.
One that we can think of is the cruising speed and alti-
tude. Due to lack of time we were not able to implement
this properly, but it might yield better results for classifying
helicopters.

Similarly, more could be done to detect rescue helicopters.
In this research we only look at the lift-off and landing lo-
cation of helicopters, and compare it to hospital locations.
The problem is that this does not work well when sensors
don’t have line of sight on the area around those hospitals.
There may be other features that distinguish a regular he-
licopter from rescue helicopters, such as their call sign or
flying patterns.
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