
Flight clustering for route detection and CO2 emissions

Filippo Sestini
Vrije Universiteit Amsterdam

f.sestini@student.vu.nl

Davide Dal Bianco
Vrije Universiteit Amsterdam
d.dalbianco@student.vu.nl

1. INTRODUCTION
The number of flying airplanes has increased much in the

last decade. This led to many problems, mostly related to se-
curity and air traffic control. It was clear that radar surveil-
lance systems would not be sufficient to monitor flights, since
airplanes are passive entities. With the introduction of new
technologies, a new standard called ADS-B has been devel-
oped to actively monitor aircrafts and manage routings.

Automatic Dependant Surveillance - Broadcast (ADS-B)
is the last generation standard for air traffic monitoring. The
main idea of this technology is that each aircraft broadcasts
its position and status using internal sensors, without rely-
ing on external entities. On the other hand, each airplane
is able to receive the messages and detect the position of
other vehicles autonomously, thus allowing it to maintain a
minimum distance and avoid collision.

ADS-B messages are sent without any encryption and can
be received and decoded by anyone. We were able to obtain
a dataset, provided by OpenSky network, containing all the
ADS-B messages sent by airplanes and collected by volun-
teers during a time period spanning a week. The dataset
includes data from September 18th 2016 to September 24th

2016, as collected by about 70 sensors spread across western
Europe. It is the purpose of this paper to explain our ap-
proach in analyzing and extracting data from such dataset.
It is particularly intresting to see to which point data like the
one offered by OpenSky is suitable to get useful information
about flights. In this project, we concentrate on analyzing
the air traffic and its patterns, and in particular we try to
discover standard routes between pairs of airports, as well
as flights that diverge from them.

2. RELATED WORK

2.1 OpenSky Network
Most aircrafts are equipped with an ADB-S transmitter,

with which they send information about their status and
position continuously, to guarantee better air traffic control.

These messages are not encripted and, in most regions, this
technology will become mandatory in 2020. For these rea-
sons OpenSky network has been created [2].

OpenSky is an open source network that aggregates ADS-
B messages collected by volunteers around the globe. The
dataset is accessible by everyone for non-profit purposes and
the data is provided in raw format, in order to perform re-
search and statistics about air traffic.
There are some limitation to the data that is collected by
the network. Western Europe is well, but only partially cov-
ered. In areas where coverage is spotty or absent, it is not
possible to detect complete airplane information. Addition-
ally, messages are collected by volunteers and there are no
guarantees about the reliability of the collected information.

2.1.1 ADS-B messages
The ADS-B standard defines different kinds of messages

which are sent at different frequencies. Among those types,
four are particularly useful to extract information about air-
planes and flights:

• Aircraft identification messages contain the callsign of
the airplane;

• Airborne position messages contain altitude, latititude
and longitude of the airplane and are sent twice per
second;

• Airborne velocity messages contain climb rate and ve-
locity of the airplane.

Every ADS-B transmitter is assigned a unique 24-bit ICAO
number. Since the transmitters installed on the airplanes are
hardly changed, we can safely consider an aircraft and its
ADS-B transmitter as the same entity. Every raw ADS-B
message records the ICAO number of the transmitter, hence
the aircraft, that sent it. This is basically the way we are
able to associate information from the ADS-B messages to
individual airplanes.

2.2 Route clustering
The research led by J. DeArmon showed that similar routes

can be grouped together based on their similarity, and the
result of this grouping can be used to reduce the number of
paths between a pair of airports, thus decreasing air traffic
congestion[1]. The first prototype of this model has been
developed to improve the air traffic flow in the National
Airspace System of the USA.

1



2.2.1 Routes distance
Routes are represented by an ordered list of the geograph-

ical sectors where the aircrafts transit. Prior to devising the
clustering algorithm, it is important to define how to mea-
sure the distance between two different routes. Since each
sector is identified by a code, the string editing distance
can be used to measure the distance between two differ-
ent routes. The distance is therefore represented by the
minimum number of operations – insertion, deletion and re-
placement – to transform Route 1 into Route 2 or vice-versa.
Different weights can also be applied to different operations.
The distance should not depend on the length of the routes
and for this reason it is divided by the sum of the lengths
of the routes. The final result represents the percentage of
difference between the routes[1].

2.2.2 Routes clustering
Given a suitable distance measure for each couple of routes,

it is necessary to define a clustering algorithm to group
them. Many methods have been tried during the research
described in [1], and the Leader algorithm showed the best
results. The algorithm proceeds by processing the entire se-
quence of routes to be clustered, and it starts by assigning
the first of these routes to the first cluster. In then examines
each route in turn: a route that is sufficiently close to the
leader of a cluster is assigned to it. If no leader is found to
be close enough to the current route, it is assigned as the
leader of a new cluster.

As it is explained in detail below, our route detection al-
gorithm comprises a part of route clustering that is inspired
in many ways by the above algorithm, as described in [1].

3. RESEARCH QUESTIONS
With this project, we aim to answer the following ques-

tions:

• What are the standard routes between pairs of air-
ports?

• Which flights and airlines diverge from them? In which
airports?

• How much CO2 would be saved if aircrafts followed a
straight-line route instead of the standard one?

To answer these questions, we are going to use a dataset
of raw ADS-B messages encoded in AVRO format. This
dataset provides information from the OpenSky network for
a full week of September 2016. The quantity of available
messages is very high, but their content is missing some
important informations about the flights, such as airlines
and airports. It follows that there are other questions that
must be answered in the development of the project:

• How to use raw ADS-B data to identify flights?

• How to use raw ADS-B data to discover additional
properties of flights, such as associated airline or CO2
consumption of the aircraft?

• How to identify the departure and arrival airports of
a flight?

• How to identify standard routes from an unstructured
group of flights?

• Is ADS-B data alone enough to answer the above ques-
tions? Do we need external datasets?

4. PROJECT SETUP

4.1 Technologies
Analyzing the entire dataset requires a lot of computa-

tional power, hence the need to use a cluster to perform the
computations on the entire dataset. However, before exe-
cuting on the cluster, it is essential to be able to try the
algorithms locally on a small subset of the data, in order
to test their correctness end efficiency, and to obtain useful
statistics.

On the cluster, we chose to use Apache Spark because
it is extremely fast while providing an easy and convenient
development interface. In particular, the Scala version was
chosen instead of PySpark because of the strong typing and
the functional programming approach. In addition to this,
the Java library libadsb was used to decode the raw ADS-B
messages.

On our local datasets, in addition to Scala we used Haskell
and Python as scripting languages for fast prototyping. The
first one was suitable for data manipulation and algorithms
testing, while the second one offers a convenient way to plot
data using the library Matplotlib.

4.2 Algorithm overview
Our processing algorithm is composed of three phases that

are executed in sequence; the output of a phase is the input
of the next. The process starts from a dataset of raw ADS-
B messages encoded in AVRO format, and ends producing
the data necessary to answer our research questions. The
phases are the following:

1. Position extraction: the dataset of AVRO-encoded
ADS-B messages is analyzed to extract only the po-
sition information abount the aircrafts. In particular,
this phase produces a table of timestamped position
points with latitude, longitue and altitude. Every po-
sition point is associated to a particular aircraft, iden-
tified by a unique ICAO code;

2. Flight detection: the unstructured position points
are analyzed per aircraft (per ICAO), and grouped to-
gether to extract single discrete flights. For each de-
tected flight, departure and arrival airports are com-
puted;

3. Route detection: flights are grouped by pair of de-
parture and arrival airport, and sent to an aggregative
clustering algorithm that is used to identify standard
routes and routes that diverge from them.

These three phases are explained in more detail in the
sections that follow.

4.3 Positions
Decoding the position of an aircraft from ADS-B position

messages is more complicated than one would expect. Infor-
mation on latitude and longitude is divided into two types
of position messages: odd and even. Both these types of
messages are needed to correctly decode the position. This
is according to a format called Compact Position Reporting

2



(CPR), which allows to encode higher resolution information
in less bits, but is obviously less straight-forward to decode.

For the actual decoding in our algorithm we used the java-
adsb library, which however makes the effective paralleliza-
tion of the entire operation more challenging. In particular,
the decoding procedure implemented by the library is essen-
tially sequential, in that all position messages of a particular
aircraft must be submitted in order of increasing timestamp.
This renders the distribution and parallelization of the pro-
cess practically impossible.

However, even though the positions for a single aircraft
must be decoded sequentially by a single node, it is still
possible to distribute the data by aircraft, allowing us to
spread the work among the cluster. The distribution in-
volves grouping operations that are known to be particu-
larly expensive, since they require a lot of data to be shuf-
fled and shared between the nodes. Nevertheless, we did not
see alternative approaches to the problem, given the (quite
intrinsic) limitations of the decoding process.

The position decoding algorithm goes through the follow-
ing phases:

1. Extract the raw messages and their timestamp from
the avro-encoded data;

2. Decode the messages from the raw representation;

3. Filter out messages that are not position messages;

4. Group the messages by ICAO;

5. For each ICAO, order the messages according to their
timestamp;

6. For each ICAO, go through the messages in order of
timestamp and decode the positions.

Notice that, even if we were able to distribute the work
by ICAO, there is still a very high number of messages to be
processed by a single worker node. In order to avoid memory
problems, we decided to split the decoding process between
days, therefore running the above algorithm separately for
each day that we had available in the dataset. This choice
has obvious consequences on the phases that follow, as we
were not able to detect flights between two different days.
From our observations, however, we concluded that these
flights are not very frequent, so the final results did not
suffer too much.

4.4 Flights
Having extracted all position information from the raw

AVRO files, there is now the problem of identifying discrete
flights from it. Given a sequence of positions for a given
aircraft, on a particular day, we though about how to group
this information in chunks, each chunk representing a poten-
tial flight. An important insight is given by observing the
data: ADS-B messages systematically stop being received
by the sensors when the aircraft approaches the ground. It
follows that there must be a pause in the data between two
different flights, and in particular between the landing of a
flight and the take-off of another.

Another point to consider is the characteristics of position
messages received during a flight. Position messages are sent
by the aircrafts several times per minute, so two subsequent
entries are likely to differ very slightly in their space, altitude

Figure 1: Altitude values of the aircraft with ICAO
4b7fad, during September 20th, 2016. It can be seen
that the data points disappear when the aircraft ap-
proaches the ground. Also, in the group of points of
the left, the information on the first part of the flight
is entirely missing, and the first point available has
timestamp 06:46 am. This is almost certainly due
to the airplane traveling through a poorly covered
area.

and timestamp values. If they are not, then these messages
are not considered good enough for our purposes.

Position points for a given aircraft are thus grouped to-
gether according to a simple clustering algorithm: all points
are analyzed in order of timestamp, and two subsequent
points are considered belonging to the same cluster if and
only if they are no more than 20 minutes apart, their dis-
tance is no more than 20 kilometers and their altitudes differ
no more than 200 meters.

Each group is then further analyzed to determine if it ac-
tually corresponds to a single flight or not. Again, the anal-
ysis is fairly simple, and it considers altitude information of
the points to detect take-offs and landings. In particular, a
group of points is considered a valid flight if and only if it
starts and ends with points at an altitude of 3000 m or be-
low, and shows an ascent as well as a descent. Ascents and
descents are defined as sequences of points which altitudes
rise, respectively decrease, steadily for 2000 meters.

We acknowledge that the criteria according to which we
group and filter discrete flights are pretty restrictive, and
that we inevitably throw away a lot of data and possibly
some flights in the process. However, given the unreliability
of the data and the difficulty of our task following from it, we
wanted to deal with sufficiently precise and detailed data,
in order to make our life easier in the next phases of the
processing. In particular, the restriction on the end points
of a flight being below 3000 m is the most important one for
our purposes (as explained below), and unfortunately also
the one that seems to filter out the majority of potential
flights.

4.4.1 Departure and arrival airports
A flight is given by a sequence of positions, as well as

departure and arrival airports. There two last informations,
however, are not provided by the data and must be inferred

3



Figure 2: Altitude values of the aircraft with ICAO
4b7fad, during September 20th, 2016, as grouped by
the flight detection algorithm.

in some way. Our approach was to consider the first and last
position point of a flight, and determine the airports as the
closest ones to these points, in terms of euclidean distance.

To detect the airports, we used the help of an external
dataset containing a list of airports together with their lo-
cations. This dataset originally contained much more data
than we needed, as it also listed small non-commercial air-
ports. In order for our algorithm to be reasonably correct,
we had to trim the dataset first removing the airports with-
out a IATA code, and then keeping only commercial airports
with the help of an external list we found on the Internet.
This filtering reduced the list from 6977 to 639 entries. The
resulting number of entries is still a little bit high for our
purposes, but it was nevertheless the best dataset we could
get. The alternative would have been to build a dataset by
hand, which seemed extremely time consuming.

We specifically set the threshold of 3000 m in the flight
detection algorithm for purpose of airport detection: af-
ter some observations of read flights on the website Fligh-
tRadar24, we concluded that when an aircraft goes below
an altitude of 3000 m, its position is very close to the take-
off/landing airport. The airport identification works reason-
ably well in this setting, and with the external dataset. It
is of couse not perfect, for two main reasons:

• The dataset may still contain minor airports that are
very close to bigger commercial ones that are the real
target of a flight; in these situations, it is possible that
the minor airport gets erroneously selected;

• A threshold of 3000 m may noy be sufficient in areas
that contain many big commercial airports that are
very close to each other; one example of such area is
London.

Having considered these issues, we still settled for the sim-
plest solution, as we did not find alternative ways to detect
airports given the data available.

4.4.2 Sectors
The route detection algorithm, as explained in details

below, uses a representation of flights and routes as a se-
quence of sectors, where each sector represents a portion of

the world map. For this reason, the flights detection phase
outputs flights as sequences of sectors rather than position
points. This has two main advantages:

• It prepares the data to be easily processed by the fol-
lowing phase of the algorithm;

• It represents flights with much less space than as a
highly-dense sequence of points.

We could have considered alternative ways to eliminate re-
dundant information and reduce the amount of data needed
to represent a single flight, but the routes detection algo-
rithm would still have transformed those representations to
sequences of sectors. It follows that converting directly from
position points to sectors was obviously the best approach.

In practice, a sequence of position points is translated in
a sequence of sectors by simply truncating the latitude and
longitude part of a point to one decimal digit. Contiguous
sequences of values with the same truncated latitude and
longitude represent the same sector, and are compressent
into one. This process yields sectors of about 10 km by 10
km, which is a good approximation for our purposes, where
sub-kilometer precision is not needed.

4.5 Routes
The most important part of the process is the detection of

routes between pairs of airports. Standard routes between a
pair of airports are likely to be used by the majority of flights
between those airports. Our algorithm relies on the assump-
tion that the converse should also be true, namely that if a
route is used by the majority of flights going from an airport
to another, than that route must represent a (possibly, the)
standard route between that pair of airports.

The actual route detection process relies on an aggregative
clustering algorithm that groups together flights according
to a distance metric. The results of the clustering are used
to determine the standard route between a certain pair of
airports. More precisely, the algorithm goes through the
following steps for each pair of airports:

1. Apply the clustering algorithm to all the flights that
have the current pair of airports as endpoints;

2. Select the cluster that classifies the highest number of
routes;

3. Select a route that constitues the representative of that
cluster as the one having the least distance between all
the other routes in the cluster;

4. The representative of this cluster determines the stan-
dard route between the pair of airports;

5. All the routes classified by the other clusters represent
routes that diverge from the standard route.

The approach described above has the advantage of be-
ing simple and generally correct in most situations. It has,
of course, some problems, that come in particular from its
being fairly naive. First of all, it goes under the assumption
that the standard route, officially prescribed by the appro-
priate institutions, is the one that is used by most flights.
This assumption may be invalidated in two obvious ways,
among possibly others:

4



• The analysis clearly does not take into account flights,
and therefore routes that cannot make through the
route detection phase of the algorithm. Our dataset
is not extremely reliable, so say the least. The Open-
Sky Network has, and the time or writing this paper,
a fairly good coverage of western Europe, but some
sports may still be poorly detected by the sensors. If a
standard route happens to pass through an area that
is poorly covered, it is likely that other, non standard
routes will be selected by the algorithm as standard,
just because they can be detected;

• There may be reasons or events, such as military con-
flicts, for which airplanes are forced to systematically
deviate from a standard route, for a period of time
that can span days or even months. These tempo-
rary anomalies clearly invalidate this assumption, and
would go absolutely undetected by our algorithm. This
is especially true in settings like the one we were work-
ing in, where information spans over a limited period
of time.

These, however, are fundamental problems of the data we
use. They affect the results of the algorithm, but do not
depend on it so they cannot be reduced using a more clever
algorithm. We feel that, with the information available and
in particular without an external source of standard routes,
considering the above assumption as true is the best possible
approach.

However, there are some issues that have to do with the
particular implementation of the algorithm:

• There could be situations where clusters have the same
amount of routes, or the numbers differ very slightly.
In this cases, the accuracy of the results inevitably
decreases;

• There could be areas that are poorly covered by the
sensors, or that have few flights passing though it. A
cluster with five routes would be selected against one
with two or three, but clearly it does not have a strong
argument in determining the standard route between
two airports. There are two possible approaches to
this. The first is to recognize that the information
available is not enough, and possibly leave some pairs
of airports with undetermined standard routes. The
other, and the one that we follow, is to just run the al-
gorithm without taking into account how many routes
are actually involved in the selection of the standard
route. A possible refinement could be to add to the
front-end visualization of the standard routes an indi-
cation of “accuracy” of a particular route based on the
amount of data available in the detection.

4.5.1 Clustering algorithm
Routes, both standard and nonstandard, are determined

separately for each ordered pair of airports. The pairs are
ordered in the sense that routes from Schiphol to Charles
de Gaulle and Charles de Gaulle to Schiphol are considered
separately. The algorithm proceeds by grouping together
flights for each pair of airports. Then, given a particular
pair, the following sequence of steps is executed for each
flight, one after the other.

• Test the flight agains every already present cluster,
where the test is positive if and only if the distance
between the current flight and every flight in the clus-
ter is below a certain threshold;

• If the test is positive for some cluster, add the flight
to that cluster;

• Otherwise, create a new cluster with the current flight
as the only classified flight.

As it can be seen, the clustering algorithm proceeds by
maintaining a list of clusters that gets updated at each iter-
ation, making it fundamentally sequential. It follows that,
on a large scale implementation, every execution of the clus-
tering algorithm will be carried on by a single worker. The
parallelization of the process, however, is not damaged: a
separate clustering algorithm must be executed for each pair
of airports, so it sufficies to distribute the data among the
nodes by pair of airports.

Our approach of clustering together routes represented
as sequences of sectors is inspired by the Leader Algorithm
described in [1], but differs from it in some ways. Sectors
in [1] are bounded airspace regions under the control of a
single air traffic controller or small team, hence they cover a
relatively large area. Flights with such subdivision usually
go through 5–10 sectors. Our sectors are smaller — each
flight has approximately 20–70 of them — therefore they
represent a much more fine-grained subdivision of the world
map.

In [1], distance between two routes is computed as a simple
editing distance between a lexical representation of routes.
With smaller sectors, however, comes the need to take other
factors into account. An extreme example of why this is
needed is given by two routes that are almost parallel and
at distance of slightly more than 10 km. In our subdivision
in sectors of 10 km by 10 km, these two routes would end up
represented by a sequence with almost no common sectors,
even though they are actually very similar. A simple editing
distance function would assign the same value to this pair of
routes, as well as another pair of routes much more distant
and different from each other.

To avoid errors in the clustering, we also consider the eu-
clidean distance between differing sectors of two routes as
a weight in the final result. This values, together with the
editing distance, determine the distance between two routes.
The threshold at the heart of the algorithm, as well as the
other parameters, have been fine-tuned with experimenta-
tions and observation of the results.

To aid the visualization, we consider “diverging clusters”
instead of diverging flights. After the clustering process, all
clusters different from the one selected as standard are di-
verging clusters. We then display the representatives of the
diverging clusters as the diverging routes for each airport.
The rationale is simply that routes in the same cluster are
close enough to be abstracted by a single representative of
the entire group.

4.5.2 CO2 consumption
A little research showed that an average aircraft produces

about 53 pounds of carbon dioxide per mile. We used this
value to compute the difference in CO2 production between
the standard routes and the corresponding straight-line route.

5



Figure 3: Visualization of CO2 consumption for the
standard route from Amsterdam to Vatry. It can
be seen that the route is mostly green for the first
part. It then shifts to red in the last part, where it
takes a detour from the straight-line route.

We also wanted to offer a visualization of the comsump-
tion of fuel with respect to a straight-line route. The visual-
ization should show the points of a given route on the map in
different colors on a palette from greed to red, where hues to-
wards red would indicate a point of high consumption in the
route. To do this, we needed to attribute to each segment of
the route a suitable value, from which we could determine its
color. Rather than trying to compute a value of “consump-
tion” for each segment, we decided to determine it based
on how different the route is with respect to the straight-
line route. The main characteristic of a straight-line route
is that the airplane always points to the destination airport.
Therefore, we considered as value of each segment the angle
between the direction that the aircraft is facing in that seg-
ment and the direction of the destination airport. Higher
values lead to more red segments.

4.6 Deployment on the hadoop cluster
When working of large-scale datasets, it is essential to un-

derstand the available data and try to extract only relevant
information from it. The subdivision of our algorithm in
different phases is not only a convenient logical partitioning
of operations, but it is essential to transform the dataset
into smaller datasets, tailored to our needs. It is useful to
do this transformation gradually, step by step, so that single
intermediate phases can be reiterated without affecting the
previous ones.

The whole algorithm has been implemented as a Scala +
Spark project, that has been deployed to the Hadoop clus-
ter. We developed every phase of the algorithm as a separate
executable Scala class, allowing us to run each phase sepa-
rately.

The position extraction phase was run on the entire dataset

Figure 4: Results of standard (blue) and diverg-
ing (red) routes detection for flights from London
Gatwick to Amsterdam Schiphol.

of raw AVRO-encoded messages, and it was, and one could
expect, the most time consuming. The entire execution took
about 48 hours. As a result of this phase, we were able to
shrink the data from about 85 GB per day to about 10 GB
of position points per day. This of course made the next
phases of the algorithm more tractable. Position data has
then been processed by the flight detection algorithm, in
about 24 hours. This phase, as we already explained, throws
away a lot of data. Also, flights are represented and saved to
disk as sequences of sectors, where each flight it composed of
20–70 sectors. This gives a very succint representation, and
we were able to store the output of this phase in just about
4 MB per day. The small size of the flights data allowed us
to run the route clustering algorithm and all the additional
JSON files generation for the visualization in under 30 min-
utes. With such small execution time, we were able to test
the results of the algorithm several times, and improve its
performance and results.

5. EXPERIMENTS

5.1 Flight detection
We carried out some experiments on the results of the

various phases and algorithms, in order to asses their be-
haviour. Some statistic data collected in the flight detection
phase show how our classification criteria turned out to be
pretty restrictive, as expected. The collected data is showed
in Table 1.

This result should be attributed to the restrictive criteria
of the classification algorithm, as well as to the incomplete
information provided by the dataset. It should be recalled
that, even though the OpenSky network comprises at the
moment of 70 active sensors, some spots in the western Eu-
rope area may still be pooly covered, or not covered at all.
Even a small poorly covered area makes all information on
the flights passing through it incomplete, thus unsuitable for
our analysis.

It should also be considered that what our algorithm con-
siders as a cluster is just a group of position points that
is sufficiently dense. A cluster does not necessarily corre-
sponds to a flight with incomplete data (and most of the
times it doesn’t). Comparing the number of detected flights
with the total number of clusters is not a good indication
of the undetected flights or the amound of position points
discarded by the algorithm. Having said this, the table still

6



Day in dataset Clusters Detected flights
18/09/2016 199030 1219
19/09/2016 170594 1103
20/09/2016 126370 1241
21/09/2016 127855 1205
22/09/2016 127982 1308
23/09/2016 130662 1243
24/09/2016 121624 874

Table 1: Amount of clusters and flights per day, as
determined by the flight detection algorithm

Airline Normal Diverging
KLM Royal Dutch Airlines 203 14

Ryanair 124 20
Swiss International Air Lines 794 38

Alitalia 412 39
British Airways 12 2

Lufthansa 1329 38
easyJet 108 15

Germanwings 191 18

Table 2: Excerpt of data relating some major air-
lines to flights that comply or diverge from a stan-
dard route

gives an idea of how good the dataset is. In an ideal dataset,
every cluster corresponds to a flight.

5.2 Airlines
In order to compute the amount of flights diverging from

a standard route per airline, we needed to associate an air-
line to each flight. This is not a completely trivial task, as
airline information is not provided at all by the data. Every
aircraft, hence every flight, has an ICAO number associated
to it, from which it is possible to determine callsigns from
the identification messages in the dataset. In the case of
commercial flights, the callsign of an aircraft contains the
three-letter code of the airline for which the vehicle is fly-
ing for at the moment. Since aircraft are bought by airlines
and hardly transferred from an airline to another, it is safe
to assume that only one callsign is sufficient to determine
the airline of an aircraft. The mapping between three-letter
codes of airlines and their name has been done with the help
of an external dataset.

Of 19860 distinct ICAOs for which identification messages
were available, 15911 had a unique three-letter airline code
in their callsigns, and 15691 had a code actually correspond-
ing to an airline in the dataset. The remaining 4169 ICAOs
without a proper airline code are likely to correspond to
private airplanes.

5.3 Diverging flights
We were able to associate an airline to almost all of the

flights that resulted from the route clustering phase. From
this information, we then determined how many flights, per
airline, follow and do not follow the standard route for their
particular pair of airports, as identified by our standard
route detection. We observed that the majority of flights
do follow tha standard route for their particular pair of de-
parture and arrival airports. Table 2 shows an excerpt of
the data that we were able to collect.

Figure 5: Results of standard (blue) and diverging
(red) routes detection for flights from Amsterdam
Schiphol to Milano Linate, during our previous ex-
periments. It can be seen that the diverging route
on the right is very similar to the standard route,
but the clustering algorithm fails to classify it as
such. This made us increase the threshold in the
classification of routes in clusters.

From these results we may conclude that, especially for big
companies with many flights associated to them, the stan-
dard routes as detected by our algorithm are really “stan-
dard”, in the sense that there is a significant difference be-
tween flights that follow them and flights that do not.

6. CONCLUSION
The OpenSky network counts 70 active sensors at the time

of development, yielding a pretty good coverage of the west-
ern Europe area. Some areas are covered almost perfectly,
and for those we were able to detect flight accurately. Ob-
serving our results, we conclude that it is definitely possible
to identify flights with acceptable reliability using raw ADS-
B data alone. There are however some issues with the data
that make this effort less than trivial, and some advanced
techniques as well as other data sources may be needed to
determine them with more than average accuracy.

The results from the execution of the route detection al-
gorithm are quite good. It should be considered that there
are a lot of minor airports, and flight information for those
airports is, as one could expect, incomplete. Of 1165 of
the total combinations of airports, about 85 % of them has
their standard route determined by under 10 flights. These
pairs usually correspond to minor airports, and the accuracy
of the computed standard route has necessarily to be con-
sidered pretty low. For major airports, however, the avail-
able data rises significantly. As an example, the standard
route between Schiphol and London Gatwick and converse
has been determined by 39, respectively 42, routes. This
gives more confidence on the accuracy of the result.

Tuning the distance function for the route clustering phase
was more challanging than we expected. In some cases,
the algorithm ended up considering as diverging routes that

7



were relatively close to the standard one. We can conclude,
therefore, that even though we think we were able to de-
termine standard routes with acceptable accuracy and con-
fidence for medium- to big-size airports, diverging routes
detection still has some issues. We do think that the ap-
proach of using sectors and editing distance can give good
results in this context, but the distance function obviously
needs more experiments are fine-tuning to be able to give
good results in all situations.

As a final note, we were also able to conlude that ADS-
B data alone is not enough to extract information that is
sufficiently relevant to other applications. The large-scale
data sets provided by OpenSky are extremely useful, but
additional sources of information are necessary if one wants
to make sense of their raw, unstructured data.

7. FUTURE WORK
We find that the accuracy of many of our algorithms is

difficult to assess, given the lack of reliable data to com-
pare against. Future work on this project could start by re-
trieving and using such external data, when available. The
most significant effort would be to asses the correctness of
the route clustering algorithm with a precompiled dataset
of standard routes.

The next step would be to improve the algorithms, by
making them more clever and use more data from the dataset
in a better way. A trivial but effective improvement to all
phases of the algorithm follows, clearly, from increasing the
number of flights available to them.

The flight detection algorithm could be improved by using
an external dataset relating callsigns, which are amost fully
available from the data, to flights. At the time of writing we
are not aware of such dataset being publicly available, but
there could be in the future. Also, our flight detection algo-
rithm does not take velocity messages into account. Velocity
information is not vital in flights detection, but we do not
exclude that the heading information of an aircraft could be
combined with its altitude information to better recognize
ascents and descents. The grouping criteria in our flight
detection are quite restrictive, to be able to get sufficiently
reliable outputs with a relatively simple algorithm. These
criteria can surely be made less restrictive, using some more
advanced techniques to make up for missing points.

There is room for improvement in the route detection al-
gorithm, for example by tuning the way routes are clustered
together, and in particular by selecting a better distance
function. A possible alternative way to estimate the distance
could be to compute the area delimited by two routes. This
area, normalized according to the length of the routes, could
be a good indication of how “different” two routes are. A
different approach could be to discard the current algorithm
and instead use an external dataset of standard routes. In
this setting, standard routes need not be computed. Flights
that diverge from them can simply be discovered by comput-
ing the distance from the standard route for the particular
pair of airports, and checking the result against a threshold.

Currently, the CO2 consumption for the flights is deter-
mined in a very simple way, by multiplying the distance
traveled by the airplanes by an estimate of the quantity of
CO2 that an average aircraft produces per mile. A better
approach could use the ICAO number of each single aircraft
to index an external dataset containing its characteristics.
These properties could be used to compute a more precise

and realistic estimate of CO2 production for each single air-
craft.

References
[1] James DeArmon et al. “Air Route Clustering for a Queu-

ing Network Model of the National Airspace System”.
In: Virginia, 2014.

[2] Matthias Schäfer et al. “Bringing Up OpenSky: A Large-
scale ADS-B Sensor Network for Research”. In: Proceed-
ings of the 13th International Symposium on Informa-
tion Processing in Sensor Networks. IPSN ’14. Berlin,
Germany: IEEE Press, 2014, pp. 83–94. isbn: 978-1-
4799-3146-0. url: http://dl.acm.org/citation.cfm?
id=2602339.2602350.

8


