
1

Minentropy and its Variations
for Cryptography

Leonid Reyzin

May 23, 2011
5th International Conference on Information Theoretic Security



2

guessability and entropy
• Many ways to measure entropy
• If I want to guess your password, 

which entropy do I care about?
• This talk: 

minentropy = − log (Pr [adversary predicts sample])

Wpredictability

H∞(W) = − log max Pr[w]w
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what is minentropy good for?

key w = a b
n/2n/2

• Passwords
• Message authentication

[Wegman-Carter ‘81]

× +

MACa,b(m) = σ = am + b

m

∈ GF(2n/2)×GF(2n/2)
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what is minentropy good for?

key w = a b
n/2

Let |a,b|= n, H∞(a,b) = k
Let “entropy gap” n − k = g 

minentropy k gap g

n/2

Security: k − n/2=n/2 − g

• Passwords
• Message authentication

[Maurer-Wolf ’03]

MACa,b(m) = σ = am + b
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what is minentropy good for?

MACa,b(m) = σ = am + b
• Passwords
• Message authentication
• Secret key extraction (⇒ encryption, etc.)

w RExtseed i

jointly uniform
(ε-close)

minentropy k

reusable 

[Bennett-Brassard-Robert ’85,
Impagliazzo-Levin-Luby ’89,

Nisan-Zuckerman ’93]
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is it good for privacy amplification?
wpartially

secret  

Goal: from a partial secret w
agree on a uniform secret R [Bennett-Brassard-Robert ’85]

Eve knows something about w

i
w RExti

w RExti i R

Alice Bob

Simple solution: use an extractor
But wait!  What is the right value for H∞(w)?
Depends on Eve’s knowledge Y
So how do we know what Ext to apply?



7

defining conditional entropy H∞(W | Y)
• E.g., W is uniform, Y = Hamming Weight(W)

predictability W

“average minentropy” but not average of minentropy:
if min-entropy is 0 half the time, and 1000 half the time,
you get log (20+2–1000)/2 ≈ – log 1/2 = 1.

• But what about H∞(W | Y) ?

H∞(W | Y = n/2) ≥ n − ½ log n − 1 
H∞(W | Y = 0) = 0 

• Recall: minentropy = − log (predictability)
H∞(W) = − log max Pr[w]

• What’s the probability of predicting W given Y?
w

E max Pr[w|Y=y]
wy

H∞(W | Y) = − log [Dodis-Ostrovsky
-R-Smith ‘04]

Pr[Y = n/2] > 1/(2√n) ⇒
Pr[Y = n] = 2−n ⇒
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what is H∞(W | Y) good for?
• Passwords

– Prob. of guessing by adversary who knows Y: 2
• Message authentication

– If key is W and adversary knows Y: security H∞(W | Y) − n/2
• Secret key extraction (⇒ encryption, etc.)

– All extractors work [Vadhan ‘11]

−H∞(W | Y)

w RExtseed i

jointly uniform given Y

H∞(W | Y)=k
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what is H∞(W | Y) good for?
• Passwords

– Prob. of guessing by adversary who knows Y: 2
• Message authentication

– If key is W and adversary knows Y: security H∞(W | Y) − n/2
• Secret key extraction (⇒ encryption, etc.)

– All extractors work [Vadhan ‘11]
– Therefore, privacy amplification!

wpartially
secret  

Eve knows something about w

i
w RExti

w RExti i R

Alice Bob

−H∞(W | Y)
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what about information reconciliation?

Alice Bob
w w′

Eve

s,iw RExti

sS

Recsw′ w RExti

error-correcting info 

• How long an R can you extract?
• Depends on H∞(W | Y, S) !
• Lemma: H∞(W | Y, S) ≥ H∞(W, S | Y) − bit-length (S)
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how to build S?
Code C: {0,1}m → {0,1}n

• encodes m-bit messages into n-bit codewords
• any two codewords differ in at least d locations

– fewer than d/2 errors ⇒ unique correct decoding

C
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how to build S?
• Idea: what if w is a codeword in an ECC?
• Decoding finds w from w′
• If w not a codeword, simply shift the ECC
• S(w) is the shift to random

codeword [Juels-Watenberg ’02]:
s = w ⊕ ECC(r)

• Recover: dec(w′ ⊕ s) ⊕ s w
w′

s=S(w)

–s
+s dec
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what about information reconciliation?

Alice Bob
w w′

Eve

s = w ⊕ ECC(r), iw RExti

Recsw′ w RExti

• Lemma: H∞(W | Y, S) ≥ H∞(W, S | Y) − bit-length (S)

H∞(W | Y) + |r|
=

n =

m=
• H∞(W | Y, S) ≥ H∞(W | Y) + m − n
• Entropy loss for a code from m bits to n bits: n− m
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active adversary

Alice Bob
w w′

R R

E
v
e

or ⊥ or ⊥

• Starting in Maurer and Maurer-Wolf 1997
• Interesting even if w = w′
• Basic problem: authenticate extractor seed i
• Problem: if H∞(W|Y)<n/2, w can’t be used as a MAC key
• Idea [Renner-Wolf 2003]: use interaction, 

one bit in two rounds
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ww challenge x
Accept 1 if Extx(w)

is correct

authenticating a bit b [Renner-Wolf 03]

Alice Bob

w
tExtx response t = Extx(w) 

iff b=1; else just send 0

x′ x
t′ t

Note: Eve can make Bob’s view  ≠ Alice’s view

E
v
e

w
tExtx

w
t′Extx′

Claim: Eve can’t change 0 to 1! 
Lemma [Kanukurthi-R. ’09] H∞(Ext(W;X) | X,Y) ≥ min (|t|, log   ) − 1

As long as H∞(W | Y) is high enough for Ext to ensure quality ε;
but we can measure it: each bit authenticated reduces it by |t|

(To prevent change of 1 to 0, make #0s = #1s)
1
ε
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ww challenge x
Accept 1 if Extx(w)

is correct

improving entropy loss

Alice Bob

w
tExtx response t = Extx(w) 

iff b=1; else just send 0
Problem: For  λ security, |t| ≈ λ, so each round loses λ entropy

Getting optimal entropy loss [Chandran-Kanukurthi-Ostrovsky-R ’10]:

-- Make |t| = constant.  
-- Now Eve can change/insert/delete at most constant fraction of bits
-- Encode whatever you are sending in an edit distance code 
[Schulman-Zuckerman99] of const. rate, correcting constant fraction
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ww challenge x
Accept 1 if Extx(w)

is correct

improving entropy loss

Alice Bob

w
tExtx response t = Extx(w) 

iff b=1; else just send 0
Problem: For  λ security, |t| ≈ λ, so each round loses λ entropy

Getting optimal entropy loss [Chandran-Kanukurthi-Ostrovsky-R ’10]:

-- Make |t| = constant.  
-- Now Eve can change/insert/delete at most constant fraction of bits
How to prove?
Can we use H∞(Ext(W;X) | X,Y)  ≥ min (|t|, log   ) − 1 ?1

ε
It talks about unpredictability of a single value; 

but doesn’t say anything about independence of two 
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ww challenge x
Accept 1 if Extx(w)

is correct

improving entropy loss

Alice Bob

w
tExtx response t = Extx(w) 

iff b=1; else just send 0

Can we use H∞(Ext(W;X) | X,Y)  ≥ min (|t|, log   ) − 1 ?1
ε

It talks about unpredictability of a single value; 
but doesn’t say anything about independence of two

Step 1: H∞(W | all variables Eve sees) is sufficient
Step 2: H∞(W | a specific transcript) is sufficient with high prob
Step 3: H∞(W | at every Ext step) is sufficient with high prob
Lemma: If H∞(W) is sufficient, then H∞(Ext(W; x) | x) ≥ |t| − 1

with high prob.

avg entropy
still useful

just minentropy
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If (conditional) min-entropy 

is so useful in information-theoretic crypto, 

what about computational analogues?
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computational entropy (HILL)

H∞(W) = −log max Pr[w]
w∈W

Min-Entropy
W

Two more parameters relating to what ≈ means
-- maximum size s of distinguishing circuit D
-- maximum advantage δ with which D will distinguish

predictability

HILL
[Håstad,Impagliazzo,Levin,Luby]: 
Hδ,s (W) ≥ k if ∃Z such that H∞(Z) = k and W ≈ Z



21

what is HILL entropy good for?
Hδ,s (W) ≥ k if ∃Z such that H∞(Z) = k and W ≈ ZHILL

w RExtseed i

looks (ε+δ)-close 
to uniform to 

circuits of size s

HILL entropy k

• Many uses: indistinguishability is a powerful notion. 
• In the proofs, substitute Z for W; 

a bounded adversary won’t notice
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what about conditional?

entropic secret: gab | observer knows ga, gb

entropic secret: SK | observer knows leakage
entropic secret: SignSK(m) | observer knows PK
entropic secret: PRG(x) | observer knows Enc(x)

Very common:



conditioning HILL entropy on a fixed event
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H∞(W | Y = y) ≥ H∞(W) − log 1/Pr[y]
E.g., W is uniform, Y = Hamming Weight(W)

H∞(W | Y = n/2) ≥ n − ½ log n − 1 

By the probability of the condition!
Recall: how does conditioning reduce minentropy?

Pr[Y = n/2] > 1/(2√n) ⇒



conditioning HILL entropy on a fixed event
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By the probability of the condition!
H∞(W | Y = y) ≥ H∞(W) − log 1/Pr[y]

Recall: how does conditioning reduce minentropy?

[Fuller-R ‘11] (variant of Dense Model Theorem of 
[Green-Tao ‘04, Tao-Ziegler ‘06, 
Reingold-Trevisan-Tulsiani-Vadhan ‘08, Dziembowski-Pietrzak ’08]

Warning: this is not HHILL!

It can be converted to HHILL with a loss in circuit size s
[Barak, Shaltiel, Wigderson 03]

Hδ/Pr[y],s (W | Y = y) ≥ Hδ,s (W) − log 1/Pr[y]

Weaker entropy notion: a different Z for each distinguisher (“metric*”) 

metric* metric*

Hδ,s (W) ≥ k if ∃Z s.t. H∞(Z) = k and W ≈ Z∀ distinguisher Dmetric*
D

(moreover, D is limited to deterministic distinguishers)

Theorem: same holds for computational entropy:
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Long story, but simple message:

Hδ/Pr[y],s (W | Y = y) ≥ Hδ,s (W) − log 1/Pr[y]
metric* metric*

It can be converted to HHILL with a loss in circuit size s
[Barak, Shaltiel, Wigderson 03]
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what about conditioning on average?
entropic secret: gab | observer knows ga, gb

entropic secret: SK | observer knows leakage
entropic secret: SignSK(m) | observer knows PK
entropic secret: PRG(x) | observer knows Enc(x)

Again, we may not want to reason about specific values of Y
[Hsiao-Lu-R ‘04]: 
Def: Hδ,s (W | Y) ≥ k if ∃Z such that H∞(Z | Y) = k

and (W, Y) ≈ (Z, Y)

HILL

What is it good for? Original purpose: negative result
Computational Compression (Yao) Entropy can be > HILL

Hasn’t found many uses because it’s hard to measure
(but it can be extracted from by reconstructive extractors!)

Note: W changes, Y doesn’t



27

conditioning HILL entropy on average
Recall: suppose Y is over b-bit strings

H∞(W | Y ) ≥ H∞(W) − b

Average-Case Entropy Version of Dense Model Theorem:

Hδ2b,s (W | Y ) ≥ Hδ,s (W) − bmetric* metric*

Can work with metric* and then covert to HILL when needed (loss in s)

Follows from Hδ/Pr[y],s (W | Y = y) ≥ Hδ,s (W) − log 1/Pr[y]
metric* metric*
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conditioning the conditional

Hδ2b,s (W | Y ) ≥ Hδ,s (W) − bmetric* metric*

The theorem can be applied multiple times, of course:
Hδ2b1+b2,s (W | Y1, Y2 ) ≥ Hδ,s (W) − b1 − b2

metric* metric*

(where support of Yi has size 2bi)
But we can’t prove:  Hδ2b2,s (W | Y1, Y2 ) ≥ Hδ,s (W | Y1) − b2

metric* metric*

Note: Gentry-Wichs ’11 implies:
H2δ,s/poly(δ, 2b2) (W | Y1, Y2 ) ≥ Hδ,s (W | Y1) − b2

HILL-relaxed HILL-relaxed

(bad case: W = plaintext, Y1 = PK;
because for any given y1, W has no entropy!)

Defn: Hδ,s (W|Y) ≥ k if ∃(Z, T) such that H∞(Z | T) = k
and (W, Y) ≈ (Z, T)

HILL-relaxed



29

unpredictability entropy
Why should computational 

min-entropy be defined
through indistinguishability? 
Why not model 
unpredictability  directly?

Wpredictability

H∞(W) = −log max Pr[w]
w∈W

[Hsiao-Lu-R. ‘04]
Hs

Unp(W |Z) ≥ k if for all ∀A of size s, Pr[A(z) = w] ≤ 2−k

Lemma:  HYao(W |Z) ≥ HUnp(W |Z) ≥ HHILL(W |Z)
Corollary: Reconstructive extractors work for HUnp

Lemma:  Hs
Unp(W | Y1, Y2 ) ≥ Hs

Unp(W, | Y1) − b2
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what is it good for?
Hs

Unp(W |Z) = k if for all ∀A of size s, Pr[A(z) = w] ≤ 2−k

Examples: Diffie-Hellman: gab | ga, gb

One-Way Functions: x | f(x)
Signatures: SignSK(m) | PK

Why bother?
• Hardcore bit results (e.g., [Goldreich&Levin,Ta-Shma&Zuckerman])

are typically stated only for OWF, but used everywhere
– They are actually reconstructive extractors 
– HUnp(X |Z) + reconstructive extractors  ⇒

simple generalization language
• Leakage-resilient crypto (assuming strong hardness)

HHILL=0
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the last slide
Minentropy is often the right measure
Conditional Entropy useful natural extension
Easy to use because of simple bit counting
Computational Case is trickier
• A few possible extensions
• Bit counting sometimes works
• Some definitions (such as HUnp)

only make sense conditionally
• Separations and conversions

between definitions exist
• Still, can simply proofs!
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