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2. Why should cryptographers care?
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If Alice measures her qubit,
the joint state immediately collapses to |00〉 or |11〉
Einstein’s complaint (EPR’35): This seems to violate
either locality (no instantaneous action at a distance)
or realism (objects have well-defined properties, even
before they are measured)

But there is local-realist model for this: shared coin flip

Bell’64: there are other quantum predictions that
cannot be reproduced by local-realist models
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Classical value ω(G): maximal winning probability
among classical protocols (shared randomness)
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Uniform distribution on inputs x ∈ {0, 1} and y ∈ {0, 1}
Alice and Bob output a ∈ {0, 1} and b ∈ {0, 1},
and win if a ⊕ b = x ∧ y

Best classical strategy wins with probability 0.75
(ω(G) = 0.75)

Best quantum strategy wins with prob cos(π/8)2 ≈ 0.85
using one EPR-pair (ω∗

2(G) ≈ 0.85)

Hence the output-distributions of the quantum protocol
cannot be reproduced by classical protocols

When implemented, such experiments show that
nature is not classical (i.e., not local-realist)
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et al. in ’81,’82, using entangled photon-pairs

Outcomes conform to quantum mechanical predictions,
so they seem to refute local realism

Experiments are not perfect:
1. Locality loophole: Alice and Bob shouldn’t be able to

communicate during the experiment
2. Detection loophole: photon channels and detectors

are not perfect, if the error is too big then local-realist
explanations become possible (but implausible)

Hard to close both loopholes simultaneously:
to close locality loophole distance between Alice and
Bob should be large, but then detection-error goes up
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Example 2: Magic square game

Idea: try to fill a 3 × 3 square with bits, such that each
row has even parity, each column has odd parity

Clearly impossible:
0 0 0
0 0 0
1 1 0

0 0 0
0 0 0
1 1 1

Alice gets row-index x ∈ {1, 2, 3}, Bob column-index y
Reply: row a = a1a2a3 must have even parity,
column b = b1b2b3 must have odd parity,
they must agree where row/column overlap: ay = bx

A perfect classical strategy would correspond to a
magic square, which doesn’t exist: ω(G) = 8/9

Can win with prob 1 using 2 EPR-pairs: ω∗
4(G) = 1
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1. Some source distributes n EPR-pairs 1√
2
(|00〉 + |11〉)

2. Alice and Bob measure their qubits in randomly
chosen bases (computational or diagonal)

3. They test (over public authenticated classical
channel) results for a subset: should be equal for
qubits measured in same basis, uniform otherwise

4. If the error is too big, blame Eve and abort.
Else: raw key is remaining bits that were measured
in same basis

Information-theoretically secure if Alice and Bob can
trust that they measure qubits in the chosen basis
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The previous scheme is wholly insecure if Alice and Bob
cannot trust that they measure qubits in chosen basis

Example: instead of an EPR-pair, Eve gives them two
shared random bits

For measurement in comput. basis: measure 1st bit
For measurement in diagonal basis: measure 2nd bit

If A & B measure system in same basis they get same
random bit, else get independent random bits

This gives correct statistics without any entanglement!

Eve could have a perfect copy without being detected
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Solution: test Bell inequality violation

Solution (Barrett-Hardy-Kent’05): instead Alice and Bob
test the EPR-pairs by testing Bell inequality violations

1. For each of the n “EPR-pairs” Alice and Bob
themselves choose random inputs x, y and run
CHSH-strategy

2. Test (over public channel) for a subset that statistics
conform to what EPR-pairs should give

3. If test is passed, raw key is derived from the
remaining bits

Test can only be passed if they share entanglement,
but then they can distill shared secret key from the
remaining bits
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1. There are security proofs under the assumption that

Alice’s and Bob’s qubits are measured separately,
but not for the most general coherent attacks (yet)

2. Locality loophole is no problem (isolated labs);
detection loophole is a bigger problem

Applications besides QKD: random-number generation,
bit commitment and coin flipping

Bell Inequalities: What do we know about them and why should cryptographers care – p. 13/20



Breaking parallel repetition

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:
Suppose Alice and Bob can win a game with prob c < 1

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:
Suppose Alice and Bob can win a game with prob c < 1
Let them try to win k instances of the game in parallel

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:
Suppose Alice and Bob can win a game with prob c < 1
Let them try to win k instances of the game in parallel

Raz’s parallel repetition theorem:
probability to win all games goes down as cΩ(k)

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:
Suppose Alice and Bob can win a game with prob c < 1
Let them try to win k instances of the game in parallel

Raz’s parallel repetition theorem:
probability to win all games goes down as cΩ(k)

Problem: even if classically c < 1, entanglement can
make winning probability equal to 1

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:
Suppose Alice and Bob can win a game with prob c < 1
Let them try to win k instances of the game in parallel

Raz’s parallel repetition theorem:
probability to win all games goes down as cΩ(k)

Problem: even if classically c < 1, entanglement can
make winning probability equal to 1

Example: repeat magic square game k times:

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:
Suppose Alice and Bob can win a game with prob c < 1
Let them try to win k instances of the game in parallel

Raz’s parallel repetition theorem:
probability to win all games goes down as cΩ(k)

Problem: even if classically c < 1, entanglement can
make winning probability equal to 1

Example: repeat magic square game k times:

1. Classical winning probability ≤ (8/9)Ω(k)

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:
Suppose Alice and Bob can win a game with prob c < 1
Let them try to win k instances of the game in parallel

Raz’s parallel repetition theorem:
probability to win all games goes down as cΩ(k)

Problem: even if classically c < 1, entanglement can
make winning probability equal to 1

Example: repeat magic square game k times:

1. Classical winning probability ≤ (8/9)Ω(k)

2. Quantum winning probability remains 1
if Alice and Bob share 2k EPR-pairs

Bell Inequalities: What do we know about them and why should cryptographers care – p. 14/20



Breaking parallel repetition

Parallel repetition often used for hardness-amplification:
Suppose Alice and Bob can win a game with prob c < 1
Let them try to win k instances of the game in parallel

Raz’s parallel repetition theorem:
probability to win all games goes down as cΩ(k)

Problem: even if classically c < 1, entanglement can
make winning probability equal to 1

Example: repeat magic square game k times:

1. Classical winning probability ≤ (8/9)Ω(k)

2. Quantum winning probability remains 1
if Alice and Bob share 2k EPR-pairs

Classical hardness-amplification fails here!
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Part 3:
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inequalities?
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How large can
ω∗
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be, as a function

of the allowed entanglement-dimension n?

1. JPPVW’09: at most O(n) for all G

2. BRSW’11: there is a G with
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Bell Inequalities: What do we know about them and why should cryptographers care – p. 16/20



XOR-games: constant improvement

Bell Inequalities: What do we know about them and why should cryptographers care – p. 17/20



XOR-games: constant improvement

XOR-game: the outputs a and b are bits (viewed as ±1)

Bell Inequalities: What do we know about them and why should cryptographers care – p. 17/20



XOR-games: constant improvement

XOR-game: the outputs a and b are bits (viewed as ±1),
and winning condition: a · b = cxy. Example: CHSH

Bell Inequalities: What do we know about them and why should cryptographers care – p. 17/20



XOR-games: constant improvement

XOR-game: the outputs a and b are bits (viewed as ±1),
and winning condition: a · b = cxy. Example: CHSH

For classical strategies a : x 7→ a(x) and b : y 7→ b(y),
Alice and Bob win on input x, y iff cxya(x)b(y) = 1

Bell Inequalities: What do we know about them and why should cryptographers care – p. 17/20



XOR-games: constant improvement

XOR-game: the outputs a and b are bits (viewed as ±1),
and winning condition: a · b = cxy. Example: CHSH

For classical strategies a : x 7→ a(x) and b : y 7→ b(y),
Alice and Bob win on input x, y iff cxya(x)b(y) = 1

For M(x, y) = π(x, y)cxy, ω(G) = max
a,b

∑

x,y

M(x, y)a(x)b(y)

Bell Inequalities: What do we know about them and why should cryptographers care – p. 17/20



XOR-games: constant improvement

XOR-game: the outputs a and b are bits (viewed as ±1),
and winning condition: a · b = cxy. Example: CHSH

For classical strategies a : x 7→ a(x) and b : y 7→ b(y),
Alice and Bob win on input x, y iff cxya(x)b(y) = 1

For M(x, y) = π(x, y)cxy, ω(G) = max
a,b

∑

x,y

M(x, y)a(x)b(y)

Using results of Tsirelson:

ω∗(G) = max
d,A(x),B(y)∈Sd−1

∑

x,y

M(x, y)〈A(x), B(y)〉

Bell Inequalities: What do we know about them and why should cryptographers care – p. 17/20



XOR-games: constant improvement

XOR-game: the outputs a and b are bits (viewed as ±1),
and winning condition: a · b = cxy. Example: CHSH

For classical strategies a : x 7→ a(x) and b : y 7→ b(y),
Alice and Bob win on input x, y iff cxya(x)b(y) = 1

For M(x, y) = π(x, y)cxy, ω(G) = max
a,b

∑

x,y

M(x, y)a(x)b(y)

Using results of Tsirelson:

ω∗(G) = max
d,A(x),B(y)∈Sd−1

∑

x,y

M(x, y)〈A(x), B(y)〉

Grothendieck’s inequality says ω∗(G) ≤ KGω(G)

Bell Inequalities: What do we know about them and why should cryptographers care – p. 17/20



XOR-games: constant improvement

XOR-game: the outputs a and b are bits (viewed as ±1),
and winning condition: a · b = cxy. Example: CHSH

For classical strategies a : x 7→ a(x) and b : y 7→ b(y),
Alice and Bob win on input x, y iff cxya(x)b(y) = 1

For M(x, y) = π(x, y)cxy, ω(G) = max
a,b

∑
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M(x, y)a(x)b(y)

Using results of Tsirelson:

ω∗(G) = max
d,A(x),B(y)∈Sd−1

∑

x,y

M(x, y)〈A(x), B(y)〉

Grothendieck’s inequality says ω∗(G) ≤ KGω(G)

Quantum advantage not much bigger than classical!
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What kind of entanglement?

For many purposes, EPR-pairs are the most general
kind of entanglement

Other kinds of entanglement can be derived from this
with local operations and classical communication

Not for Bell inequalities: there are games where

no violation if Alice and Bob share EPR-pairs

large violation if they share other, non-maximally
entangled state (Junge & Palazuelos’10, Regev’10)
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Summary

Bell inequality violations show that
local realism is untenable view of nature

Relevance for crypto:
1. Positive: device-independent cryptography
2. Negative: hardness amplification can fail

What do we know:
1. Essentially tight examples of Bell ineq violations,

as a function of entanglement-dimension,
and as a function of number of outputs

2. EPR-pairs not always the best type of entanglement
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