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Outline

Overview of some models of information theoretically secure
transmission over insecure channels and of secret key
generation taking advantage of public communication.

Based on new chapter of Csiszár-Körner book, 2nd edition, to
appear June 2011.

Attention concentrated on fundamental limits. Emphasis on
mathematical techniques.
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Brief history

Shannon 1949: first applied information theory to cryptology

Wyner 1975: first studied secure transmission over insecure
channels via advanced information theory techniques

Csiszár-Körner 1979: extended Wyner’s model

Bennett-Brassard-Robert 1988: showed benefits of public
discussion for generating secrecy

Maurer 1993, Ahlswede-Csiszár 1993: basic source and
channel models of generating a secret key

Maurer 1994: improved definition of security

Csiszár-Narayan 2004, 2008: multi-party source and channel
models
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Preliminaries

A random variable (RV) K is ε-secret from another RV Z if

I(K ∧ Z ) , H(K )− H(K |Z ) ≤ ε.

Proposition (Shannon 1949). Let the RVs M and K have
common range K on which a group operation + is defined. If M
and K are conditionally independent conditioned on another RV
Z , then for C = K + M

I(M ∧ C|Z ) ≤ log |K| − H(K |Z ).

Proof: I(M ∧ C|Z ) = H(C|Z )− H(C|MZ ) ≤
log |K| − H(K |MZ ) = log |K| − H(K |Z ).
Convenient notation (Csiszár-Narayan 2004):

S(K |Z ) , log |K| − H(K |Z ) security index.

Small security index ⇒ good secret key (SK)
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Definition. A RV U is ε-recoverable from a RV V if
Pr{U = ϕ(V )} ≥ ε for some function ϕ.

Let the RVs V1, . . . , Vm represent the information available to m
parties, thus Vi is the view of party i .

Definition. A RV K is ε-common randomness (ε-CR) for the m
parties if K is ε-recoverable from each Vi . The RV K is an
ε-secret key (ε-SK) relative to an adversary with view V ∗ if K is
an ε-CR and S(K |V ∗) ≤ ε.

Mathematical models of generating CR and SK specify
permissible protocols the parties may perform to arrive at views
V1, . . . , Vm from which they can obtain CR/SK as above.

Secure transmission over an insecure channel is a special case
of generating SK.
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Basic models for m = 2 users

Maurer 1993, Ahlswede-Csiszár 1993

Source model: Given i.i.d. repetitions of a triple of (correlated)
RVs (X , Y , Z ), suppose Alice sees X n = X1 . . . Xn, Bob sees
Y n = Y1 . . . Yn, Eve sees Z n = Z1 . . . Zn.

Permissible protocols: Alice and Bob generate RVs QA, QB,
independent of each other and of (X n, Y n, Z n), then they
communicate over a noiseless public channel, alternatingly
sending messages F1, F2, . . . , F2r−1, F2r , each a function of the
current view of Alice resp. Bob: for i odd resp. even, Fi is a
function of (X n, QA) resp. (Y n, QB) and of the previous
messages F1, . . . , Fi−1.

The RVs QA, QB serve to model randomized choice of the
messages Fi .

In models considered here, Eve has full access to the public
communication F = F1 . . . F2r but is unable to tamper with it.
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When communication has been completed, Alice’s view is
VA = (X n, QA, F ), Bob’s is VB = (Y n, QB, F ) and Eve’s is
VE = (Z n, F ).

Definition. An achievable SK rate is an R > 0 such that for each
ε > 0, δ > 0 and sufficiently large n, some admissible protocol
enables Alice and Bob to generate ε-SK of rate
1
n log |K| > R − δ. The largest achievable SK rate is the secret
key capacity CSK .

Prior to Maurer (1994), instead of security index < ε only < εn
was required. The value of SK capacity remains the same (at
least for a large class of models), even if one requires
ε = εn → 0 exponentially.
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Channel model. Given a discrete memoryless channel (DMC)
with one input and two outputs, with matrix

W = {W (y , z|x) : x ∈ X, y ∈ Y, z ∈ Z},

Alice selects the DMC inputs X1, . . . , Xn, Bob and Eve see the
outputs Y1, . . . , Yn resp. Z1, . . . , Zn.

Permissible protocols similar as before: Alice and Bob generate
RVs QA, QB, then alternatingly send messages over a public
channel, depending on their current views: any number of
public messages (perhaps zero) may be exchanged between
any two instances when Alice sends DMC inputs Xi (which are
functions of QA and the public messages previously received
from Bob).

SK capacity for channel model: same definition as for source
model.

Imre Csiszár Information theoretic security



Variants of the classic models: the permissible public
communication may be constrained, in rate or in the number of
rounds, or both. One model whose SK capacity is known
admits just one public message, sent by Alice, perhaps of
constrained rate. Variants of the basic models not allowing
randomization are also of interest.

If no public communication is allowed: channel model ⇒
wiretap channel (see later)
source model becomes degenerate: no CR, let alone SK can
be generated, except in trivial cases (Gács-Körner 1973)
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General approach

For achievability results: Agree first on CR not caring for
security (standard information theory techniques may be used,
simple or more complex as superposition coding). Then, take a
function of this CR whose value is already secure (privacy
amplification).

Suitable tool: Secrecy Lemma, consequence of the Extractor
Lemma (next slides).

Converses: Use bounds in terms of information measures,
manipulate them judiciously, using known (or new)
identities/inequalities. One identity has proved remarkably
useful.
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Extractor lemma

An ε-extractor for a family P of distributions on a set U is a
mapping κ : U → {1, . . . , k} such that for each RV U whose
distribution belongs to P, the distribution of κ(U) is ε-uniform:

k∑
i=1

∣∣∣∣P(κ−1(i))− 1
k

∣∣∣∣ ≤ ε, P ∈ P.

Lemma (Ahlswede-Csiszár 1998)

If P({u : P(u) ≤ 1/d}) ≥ 1− η for each P ∈ P, then for any
ε > 0, a randomly selected mapping κ : U → {1, . . . , k} is an
(ε + 2η)-extractor for P with probability
≥ 1− 2k |P|e−ε2(1−η)d/2k(1+ε).

In applications, |U|, |P| and d grow exponentially as n →∞.
Then, ε and η may be exponentially small, and log k , „the
number of extracted random bits,” may grow effectively as
rapidly as log d .
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Secrecy lemma

Lemma

If for RVs U, V with values in U, V
PUV ({(u, v) : PU|V (u|v) ≤ 1/d}) ≥ 1− η2, η ≤ 1/3,

then in case k ln(2k |V|) < α2d, α ≤ 1/6, a randomly selected
mapping κ : U → {1, . . . , k} satisfies

S(κ(U)|V ) ≤ (α + 2η) log k + h(α + η)

with probability ≥ 1− 2k |V|e−α2d/k > 0.

Corollary

Let X n, Z n be i.i.d. repetitions of a pair of RVs (X , Z ), and V (n)

any RV with at most enr possible values. To any δ > 0 there
exists ξ > 0 such that for each n and
k ≤ exp{n(H(X |Z )− r − δ)} a randomly selected
κ : Xn → {1, . . . , k} gives S(κ(X n)|Z n, V (n)) < exp{−ξn},
except with doubly exponentially small probability.
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Theorem (Maurer 1993, Ahlswede-Csiszár 1993)

For the basic source model

I(X ∧ Y )−min[I(X ∧ Z ), I(Y ∧ Z )] ≤ CSK ≤ I(X ∧ Y |Z ).

For the basic channel model

max{I(X∧Y )−min[I(X∧Z ), I(Y∧Z )]} ≤ CSK ≤ max{I(X∧Y |Z )},

with maximum over RVs satisfying PYZ |X = W.

Proof: Source model, lower bound: Alice can send a message
F = F (X n) of rate arbitrarily close to H(X |Y ) such that X n is
ε-recoverable from (Y n, F ), thus X n is an ε-CR (even with
ε = εn → 0 exponentially).
Last Corollary ⇒ there exists κ : Xn → {1, . . . , k} with

k = exp{n(H(X |Z )−H(X |Y )−δ)} = exp{n[I(X∧Y )−I(X∧Z )−δ]}.

To complete the proof, exchange the roles of Alice and Bob.
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Upper bound: Suppose K is an ε-CR thus ε-recoverable from
both (X n, QA, F ) and (Y n, QB, F ), and satisfies weak security
S(K |Z nF ) < nε. Then

log |K|−nε ≤ H(K |Z nF ) ≤ I(X nQA∧Y nQB|Z nF )+2(ε log |K|+1)

⇒ (1− 2ε)(log |K|)/n − ε− 2/n ≤ I(X nQA ∧ Y nQB|Z nF ).

By induction on the number of public messages,
I(X nQA ∧ Y nQB|Z nF ) ≤

I(X nQA ∧ Y nQB|Z n) = I(X n ∧ Y n|Z n) = nI(X ∧ Y |Z ).

Channel model admits emulating the source model, sending
i.i.d. X n ⇒ lower bound follows from that for the source model.

Upper bound: again, I(X nQA ∧ Y nQB|Z nF ) has to be bounded,
needs a little more effort.

Remark: A single-letter formula for CSK is known in special
cases only. Full solution available for restricted source model
with one-way public communication (Ahlswede-Csiszár 1993,
Csiszár-Narayan 2000).
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Wiretap channel (Wyner 1975)

Two DMCs with common input, W1 : X → Y, W2 : X → Z.

Message RV M uniform on set M.
→ channel input X n (randomized encoding allowed)
→ channel outputs Y n, Z n

Requirements: M ε-recoverable from Y n, and weakly secret
from Z n: I(M ∧ Z n) < nε.

Secrecy capacity CS: largest 1
n log |M|, in limit n →∞.

Theorem (Csiszár-Körner 1978)

CS = max[I(V ∧ Y )− I(V ∧ Z )]

for RVs V → X → YZ with PY |X = W1, PZ |X = W2; the range of
the auxilliary RV V may be assumed not larger than |X|.

Corollary. CS = 0 iff W2 is less noisy than W1. (Wyner assumed
W2 was a degraded version of W1; then V = X suffices.)
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Remarks

(i) The weak secrecy condition can be sharpened to
I(M ∧ Z n) < ε or further, requiring ε = εn → 0 exponentially;
this does not affect secrecy capacity (Csiszár 1996).

(ii) The wiretap channel is equivalent to a channel model of
generating SK not allowing public communication. While the SK
there has to be only nearly uniform, its slight modification is
suitable for M here. In absence of public communication, the
full matrix W (y , z|x) need not be known, only

W1(y |x) ,
∑
z∈Z

W (y , z|x), W2(z|x) ,
∑
y∈Y

W (y , z|x).

(iii) A channel model with public communication may have
positive SK capacity also if the corresponding wiretap channel
has CS = 0 (Maurer 1993).
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Proof sketch

Achievability: that of I(X ∧ Y )− I(X ∧ Z ) suffices, since
randomized encoding is allowed.

CR agreement: randomly select N = exp{n(I(X ∧ Y )− δ)}
sequences from the distribution Pn

X . Most outcomes of the
random selection give a good codeword set for the DMC W1: if
Alice selects as channel input a RV U uniformly distributed on
this set, denoted by U, then U will be ε-CR for Alice and Bob.

Privacy amplification: One verifies via the Secrecy Lemma the
existence of κ : U → {1, . . . , k} with

1
n

log k = I(X ∧ Y )− I(X ∧ Z )− 2δ, S(κ(U)|Z n) < ε.

This argument gives that one can have even ε = εn → 0
exponentially.
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Converse: Suppose M → X n → Y nZ n, PY n|X n = W n
1 ,

PZ n|X n = W n
2 , M is ε-recoverable from Y n and

S(M|Z n) = log |M| − H(M|Z n) < nε. The latter and
S(M|Y n) ≤ ε log |M|+ 1 (Fano’s inequality) imply

(1− ε)
1
n

log |M| − 1
n
− ε

<
1
n

[H(M|Z n)− H(M|Y n)] =
1
n

[I(M ∧ Y n)− I(M ∧ Z n)].

Key identity: For arbitrary RVs U, V and sequences of RVs
Y n, Z n

I(V ∧ Y n|U)− I(V ∧ Z n|U) = n[I(Ṽ ∧ YJ |Ũ)− I(Ṽ ∧ ZJ |Ũ)],

where Ũ = JUY1 . . . YJ−1ZJ+1 . . . Zn, Ṽ = ŨV , and J is a RV
uniform on {1, . . . , n}, independent of (U, V , Y n, Z n).
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Apply this identity with U = const, V = M ⇒ last bound equals

I(Ṽ ∧ YJ |Ũ)− I(Ṽ ∧ ZJ |Ũ),

where Ũ = JUY1 . . . YJ−1ZJ+1 . . . Zn, Ṽ = ŨM.

Renaming Ũ, Ṽ , XJ , YJ , ZJ to U, V , X , Y , Z , these RVs satisfy
the Markov conditions U → V → X → YZ , and PY |X = W1,
PZ |X = W2.

It follows that if R is an achievable SK rate then

R ≤ sup[I(V ∧ Y |U)− I(V ∧ Z |U)]

for RVs as above. This supremum is equal to
sup[I(V ∧ Y )− I(V ∧ Z )].

Standard arguments show the last supremum does not change
if |V| ≤ |X| is required.
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Broadcast channel with confidential messages

Two DCMs W1 : X → Y, W2 : X → Z.
Three messages M0, M1, Ms uniform on M0, M1, Ms

(M0, M1, Ms) → channel input X n → output Y n, Z n.

Requirements: (M0, M1, Ms) ε-recoverable from Y n,
M0 ε-recoverable from Z n, I(Ms ∧ Z n) < ε.

Goal: find all rate triples (R0, R1, Rs) achievable as n →∞.

Theorem (Csiszár-Körner 1978)

Necessary and sufficient is the existence of RVs
UV → X → YZ with PY |X = W1, PZ |X = W2 such that

R0 ≤ min[I(U ∧Y ), I(U ∧Z )], Rs ≤ I(V ∧Y |U)− I(V ∧Z |U),

R0 + R1 + Rs ≤ I(V ∧ Y |U) + min[I(U ∧ Y ), I(U ∧ Z )].

Here |U| ≤ |X|+ 3, |V| ≤ |X|+ 1 may be assumed.
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Proof idea: In (asymmetric) broadcast channel without secrecy,
random messages M0, M̃1 from sets M0, M̃1 are encoded into
channel input X n; both M0 and M̃1 have to be ε-recoverable
from Y n, and M0 also from Z n.

A random construction called superposition coding yields a
good broadcast channel code. Then Secrecy Lemma implies
existence of κ : M̃1 → Ms with Ms of right size and
S(κ(M̃1)|Z n) < ε.

The message M̃1 splits, in effect, into (M1, Ms) where
Ms = κ(M̃1) is secret from Z n.

Converse: Key identity plays crucial role.

Further generalizations of the model are known; single-letter
solution is achievable for the Cognitive Interference Channel
(Liang et al. 2009).
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Multiparty models of generating SK

Source model. Given i.i.d. repetitions of an m-tuple of RVs
XM = {Xi : i ∈ M}, where M = {1, . . . , m}, the i th party
observes the repetitions X n

i = Xi1 . . . Xin of Xi . There may be a
set D ⊂ M of compromised parties. All parties including the
compromised ones cooperate, via communication over a
noiseless public channel, to generate SK for a specified set of
parties A ⊂ D. The eavesdropper knows X n

D = {Xi : i ∈ D} and
all communication, but (unlike previously) she does not have
information unavailable to any of the m parties.

Permissible protocols: similar to the case of m = 2, but each
compromised party i ∈ D immediately reveals X n

i .

SK capacity: defined as in the case m = 2, is denoted by
CSK (A|D).

Imre Csiszár Information theoretic security



Step 1 of generating SK is agreement on CR; conveniently, let
this CR be X n

M.

The total communication F of the non-compromised parties is
communication for ε-ominiscience (for the set A) if for each
i ∈ A the whole X n

M is ε-recoverable from X n
i and (F , X n

D).

Omniscience rate ROS(A|D): the smallest R such that for each
ε > 0, δ > 0 and sufficiently large n communication for
ε-omniscience is possible with total rate < R + δ.

Theorem (Csiszár-Narayan 2004)

CSK (A|D) = H(XM|XD)− ROS(A|D).

Achievability is immediate from the Corollary of the Secrecy
Lemma.
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Here, ROS(A|D) equals the minimum of
∑

i∈D Ri for vectors
{Ri , i ∈ D} satisfying the constraints∑

i∈B

Ri ≥ H(XB |XB), B ⊂ D, B 6⊃ A.

(For D = ∅, A = M, see Wyner-Wolf-Willems 2002.)

Channel model: Given a DMC W : X1 → X2 × · · · × Xm, Party 1
controls the inputs, Party i observes output i (i = 2, . . . , m). In
other aspects, similar to the source model.

Theorem (Csiszár-Narayan 2008)

The SK capacity of a channel model is the maximum of the SK
capacities of the source models emulated by taking i.i.d.
channel inputs.

Achievability is obvious, converse is hard.
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Additional results of Csiszár-Narayan 2008

If the set D of compromised parties contains i = 1 (DMC input),
the SK capacity can be attained using a deterministic input
sequence.

If the set A of SK-seeking parties contains i = 1 (DMC input),
SK capacity can be attained by transmission: Party 1 generates
the SK and transmits it over the DMC, not relying on any public
messages from the outputs; in general, the receivers do need
public communication to recover the transmitted SK.
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