
Graph Processing on an “almost” Relational Database

Ramesh Subramonian
Oracle Labs

ramesh.subramonian@oracle.com

ABSTRACT
It would be hard to disagree with the contention that graph
processing (whether it be of connections between people,
shopping habits, . . .) allows the creation of valuable data-
driven products and insights. There is less consensus on the
systems that make it easy to analyze these graphs. In this
paper, we argue that a relational database (actually, a close
approximation to one) is well suited for many graph pro-
cessing applications. We restrict our claims to the following
case, which, we believe, dominates the nature of much data
analyses — the data does not change during the analysis in
response to external events. We present representative ex-
amples from our work at LinkedIn, the world’s largest pro-
fessional network. We present performance results for these
examples using Q, a single-node, analytical database.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Big Data, Column-Stores,
Relational Databases

1. INTRODUCTION
Data represented in graphs is particularly interesting be-

cause of the insights that can be gleaned from the inter-
connectedness of the nodes, not just the nodes (and their
attributes) themselves. However, while traversal of the edges
is easy to do conceptually, it is hard to do at scale in a per-
formant manner. This has prompted much specialized work
in processing large graphs.

Some researchers have focused on converting problems
from a relational model to a graph model arguing that “graph
database management systems provide an effective and ef-
ficient solution to data storage where data are highly con-
nected and systems need to scale to large data sets.” [10].
In contrast, we believe that converting from a graph model
to a relational model actually simplifies analysis and does
not crimp scalability.

In our experience, a significant simplification that is often
justified when looking for insights into the data is that the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request permissions from Permissions@acm.org.
http://dx.doi.org/10.1145/2621934.2621935
GRADES2014, June 22, 2014, Snowbird, Utah, USA.
Copyright 2014 ACM 978-1-4503-2982-8 ...$15.00.

data does not change during the period of analysis. This
is not always true. Examples where this assumption is un-
justified are (i) monitoring for fraud, abuse, risk, (ii) high-
frequency trading. However, we would contend that it is
the norm more than the exception that static, but not stale,
data is sufficient. Examples are when one is trying to tune
the behavior of a large web application (such as LinkedIn)
to make it more (i) engaging to users (ii) more targeted for
advertisers/marketers.

When the above assumption is justified, one can leverage
this assumption to create very simple yet powerful and per-
formant analytical systems. This is the approach we have
taken in the development of an almost relational database
(Section 2), tuned for analytics. Using some non-trivial real-
world applications, we hope to persuade the reader of the
soundness of this approach.

1.1 Contributions
This paper makes the following three contributions.
First, we present several interesting applications that are

powered by the ability to analyze graph data of various
types. Examples of graph data we have analyze include (i)
connections between users — the well known “social graph”
(Section 4.1) (ii) endorsements — where user x endorses user
y for skill z (Section 4.3) (iii) page traversals — where nodes
are pages of a web application and an edge from x to y (suit-
ably annotated with user and time information) represents
that a user visited page y after page x (Section 4.2)

Second, in earlier work [3], we have developed a moder-
ately general purpose vector programming model for sev-
eral data transformation tasks at LinkedIn. Here, we show
that this can be used for agile and efficient programming
of graph-data problems. Following Iverson [5], we suggest
that the vector programming language proposed be judged
in terms of the following.

1. ease of expressing constructs arising in problems
2. suggestivity
3. ability to subordinate detail
4. economy
5. amenability to formal proofs

In Section 4, we interleave actual code with pseudo-code to
show the ease with which a natural way of decomposing the
problem leads to working code. In practice, we find that
a relatively small number of operators is adequate. When
efficiency demands, it is possible to add custom operators
(as in Step 4 of Section 4.1) as long as they conform to the
requirements of Section 2.1.

Third, we provide performance results (Section 5) to bol-
ster our contention that one can perform realistic and fairly
complex analyses of large graph data on a using a minor
variation of the relational database model. In particular,
our results are obtained on a single, moderately powerful
machine, although that is not a restriction of the approach
we advocate.

1.2 Related Work
In comparison to Green Marl [4], which is a domain spe-

cific language for graph algorithms, Q is a general purpose
language for the manipulation of tables. We believe that
graphs can be represented (and efficiently queried) as ta-
bles. In Section 4, we provide a diverse set of examples as
evidence that this is often the case.

The database discussed in this paper shares some of the
design principles of SAP HANA [9] and some significant dif-
ferences. In common, “data can be queried and manipulated
in the same place without having to convert it into a differ-
ent format” and “processing (is provided) directly within
the database core instead of creating a new layer on top of
it” and “universal tables for storing vertices and edges, with
each attribute being mapped to a table column”. However,
we do not support data changes nor do we provide special-
ized “graph routines”. Instead, we show how existing table
manipulation routines suffice in most cases and how user-
defined functions can fill in the gaps when needed.

Several authors [1, 6, 7, 8] have posited that for many
practical problems, a single machine is up to the task of an-
alyzing large graphs, both in terms of storage and run times.
The one-machine approach, while it has its limitations, has
significant advantages in terms of simplicity. While we do
not take a position on the one-versus-many debate in this
paper, our results (Section 5) show that the relational model
is capable of very efficient implementations that allow large
problems to be solved on a single machine.

1.3 Organization
The paper is organized as follows. Section 2 describes the

analytical database used. Section 3 describes the data used
for the experiments. Section 4 presents some interesting ap-
plications that require the analysis of graph data. Section 5
presents and discusses performance results.

2. Q — THE ANALYTICAL DATABASE
Q is a high-performance “almost-relational” or “semi-relational”

analytical, single-node, column-store database.
By “analytical”, we mean that it is not meant for trans-

actional usage — data is loaded infrequently. The relatively
high cost of data change is amortized over the analysis work-
load. While Q can handle data changes, it is expensive and
therefore inadvisable to use Q in situations where the data
changes are frequent.

By “almost-relational”, we mean that it would more cor-
rectly be called a “tabular model” [2]. As Codd states,
“Tables are at a lower level of abstraction than relations,
since they give the impression that positional (array-type)
addressing is applicable (which is not true of n-ary rela-
tions), and they fail to show that the information content of
a table is independent of row order. Nevertheless, even with
these minor flaws, tables are the most important conceptual
representation of relations, because they are universally un-
derstood.”

That said, the tabular model implemented by Q satisfies
Codd’s requirements for a data model, which are

1. structural part: A collection of data structure types
(the database building blocks)

2. manipulative part: A collection of operators or rules of
inference, which can be applied to any valid instances
of the data types listed in (1), to retrieve, derive, or
modify data from any parts of those structures in any
combination desired;

3. integrity part: A collection of general integrity rules,
which implicitly or explicitly define the set of consis-
tent database states or changes of state or both —
these rules are general in the sense that they apply to
any database using this model

2.1 Operations in Q
The basic building block is a table which can be viewed as

a collection of fields or columns, each of which has the same
number of cells or values. This allows us to use notation
of the form (i) T [i].f which is the value of the ith row of
column f of table T or (ii) T [f = v] which is the subset of
rows of table T where column f has value v.

Every operation of Q consists of reading one or more columns
from one or more tables and producing one or more columns
in an existing table or a newly created one. This relatively
simple statement makes for great simplicity, both in terms
of implementation and programming (Section 2.3). There
are a few exceptions to this rule e.g.,

1. computing an associative operation on a column e.g.,
sum, min, max,ldots

2. meta-data querying e.g., are the values of a column
unique, describe a table, show tables . . .

3. input routines — from CSV, from Hadoop, . . .
4. output routines — print text, dump binary data, . . .

2.2 Implementation Details
A full description of the architecture of Q is out of the

scope of this paper. It is a column-store, where each column
is stored in binary format as a file on the file system. Q

does not explicitly load all necessary data into memory —
instead, it leaves it to the OS to load the buffer cache with
the relevant portions of disk resident files. The Q kernel en-
deavors (not always wholly successfully as in operations like
sort, permute, . . .) to respect locality of reference, thereby
improving performance.

2.3 Programming Q
Q is programmed with a vector language, not with tradi-

tional SQL. Using Codd’s terminology, it is a “double-mode”
data language i.e., it is usable in two modes (i) interactively
at a terminal and (2) embedded in an application program
written in a host language. In the second mode, the series of
Q instructions are embedded in a shell script or the program
of a scripting language e.g., PHP.

Since a full listing of the operations is not possible, we
confine ourselves give the reader a flavor for them.

1. sort T1 f1 f2 g1 g2 A would mean that we read
columns f1,f2 in table T1 and create columns g1,g2,
such that g1 is a permutation of f1 sorted in ascending
order (specified in the “A” of the last argument) and
field g2 is permuted, as a drag-along field (specified by
the underscore of the last argument)

2. shift T1 f1 n g1 v creates a new field g1 in table T1

as T [i].g1 ← T [i−n].f1 and ∀j : 1 ≤ j ≤ n : T [j].g1 ←
v

3. w=x?y:z T w x y z creates a new field w in table T as
follows. ∀i : 0 ≤ i < |T | : T [i].x = true ⇒ T [i].w ←
T [i].y; else, T [i].w ← T [i].z

3. DATA
Following Linus Torvalds’ dictum that “Bad programmers

worry about the code. Good programmers worry about data
structures and their relationships.”, this section is used to
explain the input data. This will make it easier to under-
stand the problem definitions and algorithms of Section 4.
Tables and fields are created in one of the following ways:

1. load: created in initial load from data warehouse (of-
ten HDFS)

2. post-proc: created in post-processing, in order to ac-
celerate access. Since Q does not support any structure
other than a table, the notion of the traditional index
is supported in the form of additional tables/fields.

3.1 Notations
Since tables (unlike relations) permit positional address-

ing, we need some new terminology.

1. IndexA, Definition 2. As an example, assume table
T1 has 3 rows and column f1 with values [30, 20, 10]
in that order. As an example, assume table T2 has 5
rows and column f2 with values [10, 20, 30, 20, 10] and
column fI with values [2, 1, 0, 1, 2]

2. IndexB, Definition 3. Acts like a foreign key to an
implicit field with values 0, 1, 2, . . .

3. IndexC, Definition 4. Acts like a foreign key

Definition 1. Q supports 4 kinds of integers of size 1
byte, 2 bytes, 4 bytes and 8 bytes. These are referred to as
I1, I2, I4, I8. Q supports 2 kinds of floating point numbers
of size 4 bytes and 8 bytes. These are referred to as F4, F8.

Definition 2. fI = IndexA(T2, f2, T1, f1)⇒ (∀i : T2[i].f2 =
v ⇒ T1[T2[i].fI].f1 = v)

Definition 3. fI = IndexB(T2, T1) ⇒ ∀i : T2[i].fI ∈
{0, |T1|}

Definition 4. f2 = IndexC (T2, T1, f1)⇒ ∀i∃j : T2[i].f2 =
T1[j].f1

3.2 TX
Table TX records activity of a user in terms of pages vis-

ited. We synthesized 1B = 230 rows. A row of the form
(sid = s,mid = m, pid = p, time = t) indicates that user
m visited page p at time t in session s. Rows are sorted (i)
primary on sid ascending (ii) secondary on time ascending

1. sid, load, I8
2. mid, load, I4, mid = IndexC (TX , TM ,mid)
3. time, load, I8
4. pid, load, I2, pid = IndexC (TX , TP , pid), where TP is

a table that maps integers to strings (e.g., 1 = Home
Page, . . .)

3.3 TC
Table TC stores connections between users i.e., it lists the

edges between nodes listed in TM . We synthesized 16B =
234 rows. A row of the form (from = f, to = t) indicates
that f is connected to t. Note that a connection is stored as
both (f, t) and (t, f).

1. from, load, from = IndexC(TC , TM ,mid)
2. to, load, from = IndexC(TC , TM ,mid)
3. to idx, post-proc, to idx = IndexA(TC , to, TM ,mid)
4. fromto, post-proc, from (I4) and to (I4) packed into

I8

The table is sorted in ascending order with from being the
primary sort key and to being the secondary sort key. Field
from can be deleted after post-processing is complete.

3.4 TE
TE stores endorsements. We synthesized 4B = 232 rows.

A row of the form (from = f, to = t, skill = s) indicates that
user f endorsed user t for skill s.

1. from, load, I4, from = IndexC(TE , TM ,mid)
2. to, load, I4, to = IndexC(TE , TM ,mid)
3. skill, load, I4, skill = IndexC(TE , TS , sid), where TS

is a table that maps integers to strings (e.g., 1 = Java,
2 = PHP)

TE is sorted (i) ascending on skill as primary key and (ii)
sorted ascending on from as secondary key and (iii) sorted
ascending on to as tertiary key.

3.5 TE1
Table TE1 is derived from TE and contains the endorse-

ments received by a user. A row of the form (mid = m, skill =
s, cnt = n) indicates that user m was endorsed n times for
skill s.

1. mid, post-proc, I4, mid = IndexC(TE1 , TM ,mid)
2. skill, post-proc, I4, skill = IndexC(TE1 , TS , sid)
3. cnt, post-proc, I4, positive integer

3.6 TM
Table TM lists the users. Note that (TM , TC) together

constitute the “social graph”. We synthesized 256M = 228

rows.

1. mid, load, unique, I4, sorted ascending
2. first name, load, text
3. last name, load, text
4. Cl, post-proc, I8, Cl = IndexB(TM , TC)
5. Cu, post-proc, I8, Cu = IndexB(TM , TC)
6. E1l, post-proc, I4, E1l = IndexB(TM , TE1)
7. E1u, post-proc, I4, E1u = IndexB(TM , TE1)

The table is sorted in ascending order on mid. Consider row
i in TM. Let m = TM [i].mid.

• TM [i].Cl points to the first row in TC where from =
TM [i].mid
• TM [i].Cu points to the last row (+1) in TC where

from = TM [i].mid

– (TM [i].Cu − TM [i].Cl) is the number of connec-
tions (out-edges) of TM [i].mid

– Hence, ∀j : TM [i].Cl ≤ j < TM [i].Cu : TC [j].from =
TM [i].mid

• E1l points to the first row in TE1 where mid = TM [i].mid
• E1u points to the last row (+1) in TE1 where mid =

TM [i].mid

– TM [i].E1u − TM [i].E1l is the number of unique
skills that member TM [i].mid has been endorsed
for

– ∀j : TM [i].E1l ≤ j < TM [i].E1u : TE1 [j].mid =
TM [i].mid

4. GRAPH PROBLEMS

4.1 Computing Second Degree Network
This is a useful sub-routine for other graph computations

(algorithm in Figure 1, results in Section 5.2). Given m ∈
TM .mid, find F2(m) = F1(m)∪M2 where F1(m) ⊆ TM .mid
and M2 ⊆ TM .mid such that

1. ∀j : TC [j].from = m ∧ TC [j].to = y ⇒ y ∈ F1(m)
2. ∀j, k : TC [j].from ∈M1 ∧ TC [j].to = y ⇒ y ∈M2

Steps 4, 5 of Figure 1 can be accelerated by implement-
ing it as a user-defined function (UDF), instead of iterating
Steps 1,2, 3 for each row of TD1, is significantly faster. As a
Q sysadmin, the use of UDFs is discouraged but permitted.
The SQL programmer would likely have used a “self-join”
to implement this algorithm.

4.2 Incremental Path Navigation
A web site can be considered as a graph where each page

is a node and edges between nodes, when suitably labeled,
indicate the activity of users as they navigate between pages.
Given (1) a sequence of pages, (p1, p2, . . . , pi) and (B) a
new page pX , the aim is to (i) determine the top n most
likely nodes that were visited next by users who had earlier
traversed (p1, . . . pi) and (ii) determine the number of users
who traversed the path (p1, . . . pi, pX). The algorithm (and
code in Q) for this problem is in Figure 2.

4.3 Filtered Endorsements
On LinkedIn, it is possible for users to endorse others users

for skills. The number of endorsements that user A has for
skill B can be considered as a signal that A actually has skill
B. However, I may not trust all the endorsements that A has
garnered, since I may not necessarily trust the endorser. In-
stead, I might wish to count only those endorsements made
by people whose opinion I value e.g., (i) my first degree net-
work, F1(m) (ii) people who work for the same company
that I do. Informally, the problem can be stated as follows.
Given (1) a skill, s ∈ TS .sid, and (2) a set of users I trust,
stored in field mid in table TU , find the top n users ranked
on the number of endorsements they have received for skill
s from users in TU Algorithm in Appendix, Figure 3.

4.4 People You Should Know (PYSK)
The commonality between recommendations like customized

deals and “People You May Know” (PYMK) is that it sug-
gests the creation of an edge, (between two people or be-
tween a person and a product or . . .) to a user who is one
of the nodes of the edge. A variation of this theme is to
suggest the creation of an edge to a user who is not one
of the nodes. This is equivalent to Jim introducing Jack to
Jane (who currently do not know each other) because Jim
knows that Jack and Jane both share an interest in golf.
Algorithm in Appendix, Figure 4.

5. RESULTS AND DISCUSSION

5.1 Machine Configuration and Data Sizes
For confidentiality reasons, all data described in this paper

is synthetic but representative, and is in no way related to
actual user-supplied data. Data sizes were chosen simply to
demonstrate the extent to which the system could be pushed
and are not representative of the scale at which LinkedIn is
operating — see Section 3 for sizes used. The machine used
for timing has a single 24-core Intel Xeon 2.93 GHz CPU
with 64 GB RAM and 0.5 TB disk.

5.2 Second Degree Network
In Table 1, we see that the performance (for the problem of

Section 4.1) is quite acceptable even for very large networks.
The time taken is dependent on the size of the first and
second-degree networks. Timings reported are from “warm”
runs. “Cold” runs can take as much as 40 times that of the
“warm” run. In our example, all 16B edges can fit into
main memory, although we do not explicitly “malloc” them
as such, using an ‘mmap” instead.

As the size of the second degree network scales, the bottle-
neck is the de-duplication. Initial results from using a GPU
to de-dupe (using a sort) indicate that we could reduce the
times reported here by 50%.

1st degree 2nd degree time in msec

120 64349 8.070
263 112213 12.53
505 334246 41.51
1021 694644 80.13
2053 1166594 166.4
4091 1956817 259.4
8199 4069339 1363
16378 8319301 1516

Table 1: Performance Results for Section 4.1

5.3 Interactive Path Navigation
For 1B rows of TX and 2K rows for TP , a query takes an

average of 2.5 seconds for the first iteration and 3.0 for sub-
sequent ones. Using the strip mining technique (Section 5.4)
reduces this to 1.3 seconds and 1.6 seconds respectively.

5.4 Materialization
The discerning reader would have noticed that the read-

/write style of operations (Section 2.1) leads to materializa-
tion of temporary columns, which can be expensive. Our
solution is what we call “compound expressions” where the
programmer explicitly demarcates sections of Q commands
between start compound and stop compound directives. We
use strip mining to reduce writing to memory/disk. Not all
commands (e.g., sort, permute, . . .) can be put within such
a zone Currently, the system does not automatically detect
such zones. Hence, as of today, this option is reserved for
advanced programmers.

5.5 Batch Execution
Q favors an incremental programming style, where the

programmer writes a single operation, waits for it to ter-
minate, performs queries to confirm that it succeeded as

expected and then proceeds to the next step. While we
find this a great productivity boost compared to a batch
programming style suggested by Hadoop, it means several
database invocations are necessary to execute a script. Once
a script is debugged and ready for production use, Q allows
a “batch” command, which allows the user to invoke the
database once to perform several operations. This is rem-
iniscent of SAP’s HANA where “WIPE permits multiple
complex operations to be combined within a single state-
ment, thereby reducing the need for several roundtrips be-
tween the application and the database system”[9].

5.6 Issues in Programming in Q

While we have no wish to engage in religious wars on
programming style, we believe that the examples (Figure 1,
3) have provided empirical evidence that Q meets Iverson’s
criteria (Section 1.1).

In our experience, data analysts often have a lot of intu-
ition about the data that they are dealing with. Q encour-
ages the user to push this knowledge into the code, without
hard-coding values. For example, in many cases (not all),
one can often eliminate the long tail of the distribution and
create much more compact encodings of the data. While Q

does not do compression, one can choose integers of differ-
ent sizes (Definition 1). Since most database operations are
I/O bound, the single biggest speedup is often obtained by
scanning as little data as possible.

One might argue that Q is a retrograde step from SQL
where a higher level declaration of intent is translated by an
optimizing compiler into an execution plan. However, our
experience is that the loss in expressivity is offset by

1. the agility of development that interactivity allows
2. the efficiency of the final plan.
3. the “plans” or scripts are rarely so long as to be oner-

ous to write and maintain

6. CONCLUSION
The examples presented in this paper, while simplistic for

ease of exposition, represent the potential that lies in the
analysis of graph data. The nature of such analyses are that
they are interactive and iterative but are not time sensitive
in that the data does not need to be the most current. Given
the above, (almost) relational databases allow agile and effi-
cient development of algorithms for analysis, thereby aiding
the ability to explore different hypotheses quickly.

7. REFERENCES
[1] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader.

Scalable graph exploration on multicore processors. In
SC10, 2010.

[2] E. F. Codd. Relational database; a practical
foundation for productivity. Communications of the
ACM, 25(2):109–117, February 1982.

[3] R. S. et al. In data veritas — data driven testing for
distributed systems. In 6th International Workshop on
Testing Database Systems, 2013.

[4] S. Hong, H. Chafi, and E. Sedlar. Green-marl: A DSL
for easy and efficient graph analysis. In ASPLOS,
2012.

[5] A. Iverson. Notation as a tool of thought.
Communications of the ACM, 23(8):444–465, 1980.

[6] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In OSDI,
2012.

[7] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
framework for parallel machine learning. In XXXX,
9999.

[8] A. Rowstron, D. Narayanan, A. Donnelly, G. OShea,
and A. Douglas. Nobody ever got fired for using
hadoop on a cluster. In 1st International Workshop on
Hot Topics in Cloud Data Processing, 2012.

[9] M. Rudolf, M. Paradies, C. Bornhvd, and W. Lehner.
Synopsys: Large graph analytics in the SAP HANA
database through summarization. In GRADES, 2013.

[10] R. D. Virgilio, A. Maccioni, and R. Torlone.
Converting relational to graph databases. In
GRADES, 2013.

1 Find i such that TM [i].mid = m. Fast because TM is sorted on mid.
i=‘q f to s TM mid "op=[get idx]:val=[$m]"‘

2 Find range, [TCl , TCu], of rows in TC that contain edges out of m
TC lb=‘q f to s TM TC lb "op=[get val]:idx=[$i]"‘

TC ub=‘q f to s TM TC ub "op=[get val]:idx=[$i]"‘

3 Create TD1 = F1(m) by copying above row range for field to idx of table TC

q copy fld ranges TC to idx "" $TC lb $TC ub TD1

4 Repeat previous steps for each m′ ∈ F1(m) (i.e., each row of TD1) to create TD2
By using field to idx and not field to, we avoid searching TM for each entry of TD1
Implemented as “user-defined function”

5 De-dupe the results of above
q mk uq TD2 mid Tout mid

Figure 1: Code for Problem 4.1

1 As a pre-processing step, create a boolean column SameSessAsPrev that is
1 true if the current row and the previous row are in the same session.

q f1opf2 TX sid ’op=[shift]:val=[1]:newval=[0]’ prev sid

q f1f2opf3 TX sid prev sid == same sess as prev

2 Let xi be a boolean field in TX that marks the occurrence of a sequence (p1, . . . pi)
2 Create boolean field xj = xi+1 to select rows such that
2 (i) page matches pX (ii) xi of previous row is true
2 (iii) sid of previous row is same as that of current one

q f1s1opf2 TX pid $pX ’==’ y

q f1f2opf3 TX y Previous ’&&’ z

q f1f2opf3 TX z SameSessAsPrev ’&&’ == xj

3 Summing xj = xi+1 yields the number of occurrences of the pattern
q f to s TX xj sum

4 find top n most popular next pages as follows
q f1opf2 TX xj ’op=[shift]:val=[1]:newval=[0]’ x

q f1f2opf3 TX x SameSessAsPrev ’&&’ == y

q count TX pid y TP cnt

q sortf1f2 TP cnt idx A

q pr fld TP idx:cnt | head -$n

q rename TP y Previous // Set up for next iteration

Figure 2: Appendix: Code for Problem 4.2

0 Input is skill, s, and trusted users TU , table with one column = mid
1 find i such that TS [i].sid = s. Fast because TS is sorted on sid.

i=‘q f to s TS sid "op=[get idx]:val=[$s]"‘

2 Find range, [TEl , TEu], of rows in TE that contain endorsements for skill s
TE lb=‘q f to s TS TE lb "op=[get val]:idx=[$i]"‘

TE ub=‘q f to s TS TE ub "op=[get val]:idx=[$i]"‘

3 Copy endorsements for skill s into temp table, T1

q copy fld ranges TE from "" $TE lb $TE ub T1

q copy fld ranges TE to "" $TE lb $TE ub T1

4 Using a join, create boolean field x ∈ T1 such that T1[i].mid ∈ TU .mid⇒ T1[i].x← 1
4 Operation is fast since T1 is sorted ascending on from and TU is sorted ascending on mid
4 Sorted order of T1 is consequence of TE being sorted on skill first and from second
4 Operation copy fld ranges preserves sort order

q fop TU mid "op=[sort]:ordr=[asc]"

q srt join TU mid "" T1 from x exists

5 Copy the users who were endorsed for skill s by some user in TU into another temp table, T2

5 Users can occur multiple times in T2 if endorsed by > 1 user in TU

q copy fld T1 to x T2

q rename T2 to mid

6 Create temp table T3 which contains unique values of mid ∈ T2 and their respective counts
q fop T2 mid sortA

q count vals T2 mid "" T3 mid cnt

7 Sort T3 descending on cnt and print top n
q sortf1f2 T3 cnt mid D

q pr fld T3 mid:cnt | head $n

Figure 3: Appendix: Code for Problem 4.3

1 Let T1 be first degree network of m
2 Let T2 be all edges between friends of m

q crossprod T1 mid mid T2 m1 m2 "" "" upper triangular

3 Let T3 = T2 − TC be all such edges that don’t already exist
q f1f2opf3 T2 m1 m2 concat m1m2

q srt join TC fromto "" T2 m1m2 x exists

q f1opf2 T2 x ’op=[!]’ notx

q copy fld T2 m1m2 notx T3

4 Let T5 ⊆ TE1 focus attention on endorsements of members inT1

4 Recall TE1 is sorted on skill primary and mid secondary
4 Hence, T5, created by copy fld has same sort property
4 We create T4 which is unique skills in T5 and their counts

q fop T1 mid ’op=[sort]:order=[asc]’

q srt join T1 mid "" TE1 mid x exists

q copy fld TE1 skill x T5

q copy fld TE1 mid x T5

q sortf1f2 T5 skill mid A

q count vals T5 skill T4 skill cnt

5 T6 has one row for each endorsement that m1,m2 have in common
5 This is accomplished with a cross-product with a variation.
5 It is performed in chunks (one for each skill); chunk size given by cnt in T4

q crossprod T5 mid mid T6 m1 m2 T4 cnt upper triangular

6 Now we count number of common endorsements
q f1f2opf3 T6 m1 m2 concat m1m2

q fop T6 m1m2 ’op=[sort]:order=[asc]’

q srt join T6 m1m2 "" T3 m1m2 num cnt

7 Number of common endorsements is measure of strength of connection between m1,m2

7 To find the members with the most in common, we sort
q sortf1f2 T3 cnt m1m2 D

8 Unpack m1m2 (I8) into m1 (I4) and m2 (I4)
q f1opf2f3 T3 m1m2 unconcat m1 m2

Figure 4: Appendix: Code for Problem 4.4

