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Bisimulation reduction

I Bisimulation partitioning is an important concept in many
fields (computer science, modal logic, etc.), in DB research as
well (structural index, graph reduction)

I It can be seen as a way of clustering nodes
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Figure: Bisimulation partition
example, partition block graph
(reduction graph)
{P2↔ P1→ P3→ P4}

I Reduce graph size while preserving structural properties
(e.g., reachability)

I Result can be seen as a graph
I Many algorithms, no work on analyzing the results
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Questions

Regularities, such as power-law distribution exists in
real graphs.

I Do graphs under bisimulation reduction also have
such properties?

I How would that knowledge help us?
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Experimental setup for investigation

I Big graphs, from 1 Million to 1.4 Billion edges
(Twitter, DBPedia, etc.)

I One dynamic social graph, from 17 Million to 33
Million edges (Flickr-grow)

I State-of-the-art I/O efficient algorithm for
computing bisimulation reductions (k-bisim,
k = 10)

I We use cumulative distribution function (CDF) to
present distributions
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Regularities - bisimulation result

Power-law also exists in many attributes for
bisimulation partition results for real graphs.
But this is not the case for synthetic graphs.



7/11

department of mathematics and computer science

Regularities - bisimulation result

Partition block size distribution
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Regularities - bisimulation result

Bisimulation graph in/out-degree distribution
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Dynamics - a real growing social graph

I Does the bisimulation result grow when the
original graph grows?

• Yes.

I How fast does it grow?
• Linearly with respect to the original graph.
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Insights

I Power-law distributions in bisimulation results⇒
skew expected in applications (indexes, data
partitioned among machines, . . .)

I Behaviors of graph generators⇒ some more work
needs to be done for graph generators

I Bisimulation result/graph grows⇒ lower k or
other adaptations (e.g., choose different k for
different parts of the graph, different node/edge
labeling)
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Thank you! Q&A

For more information, just google seeqr project
or visit: bit.ly/seeqr

bit.ly/seeqr
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Definition of k -bisimilar
Definition
Let k be a non-negative integer and G = 〈N , E , λN , λE 〉 be a
graph. Nodes u, v ∈ N are called k -bisimilar (denoted as u ≈k v),
iff the following holds:

1. λN (u) = λN (v),
2. if k > 0, then for any edge (u, u ′) ∈ E , there exists an edge
(v, v ′) ∈ E , such that u ′ ≈k−1 v ′ and λE (u, u ′) = λE (v, v ′),
and

3. if k > 0, then for any edge (v, v ′) ∈ E , there exists an edge
(u, u ′) ∈ E , such that v ′ ≈k−1 u ′ and λE (v, v ′) = λE (u, u ′).
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In this example graph, nodes
1 and 2 are 0- and 1- bisimilar
but not 2-bisimilar.
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Regularities - original graphs
Power-law exists in in/out-degree distribution for most of the
examined graphs.

100 102 104 106

100
10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

x (in-degree)cu
m
ul
at
iv
e
%

of
no

de
s
w
it
h

≥
x real graphs

100 102 104 106 108

100
10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

x (in-degree)

synthetic graphs

Jamendo LinkedMDB DBLP DBPedia WikiLinks Twitter
Flickr-Grow BSBM SP2B Power Random



11/11

department of mathematics and computer science

Signature length
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Out-degree
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