
Scale-up Graph Processing: A Storage-centric View

Eiko Yoneki
University of Cambridge

eiko.yoneki@cl.cam.ac.uk

Amitabha Roy
EPFL

amitabha.roy@epfl.ch

ABSTRACT

The determinant of performance in scale-up graph process-
ing on a single system is the speed at which the graph can be
fetched from storage: either from disk into memory or from
memory into CPU-cache. Algorithms that follow edges per-
form random accesses to the storage medium for the graph
and this can often be the determinant of performance, re-
gardless of the algorithmic complexity or runtime efficiency
of the actual algorithm in use. A storage-centric viewpoint
would suggest that the solution to this problem lies in recog-
nizing that graphs represent a unique workload and there-
fore should be treated as such by adopting novel ways to
access graph structured data. We approach this problem
from two different aspects and this paper details two dif-
ferent efforts in this direction. One approach is specific to
graphs stored on SSDs and accelerates random access us-
ing a novel prefetcher called RASP. The second approach
takes a fresh look at how graphs are accessed and suggests
that trading off the low cost of random access for the ap-
proach of sequentially streaming a large set of (potentially
unrelated) edges can be a winning proposition under certain
circumstances: leading to a system for graphs stored on any
medium (main-memory, SSD or magnetic disk) called X-
stream. RASP and X-stream therefore take - diametrically
opposite - storage centric viewpoints of the graph processing
problem. After contrasting the approaches and demonstrat-
ing the benefit of each, this paper ends with a description
of planned future development of an online algorithm that
selects between the two approaches, possibly providing the
best of both worlds.

1. INTRODUCTION
Large scale graph processing represents an interesting sys-

tems challenge due to the problem of lack of locality. Exe-
cuting algorithms that follow edges inevitably results in ran-
dom access to the storage medium for the graph and this can
often be the determinant of performance, regardless of the
algorithmic complexity or runtime efficiency of the actual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proc of the First International Workshop on Graph Data Management Ex-

perience and Systems (GRADES), June 23, 2013, New York, NY USA.
Copyright 2013 ACM 978-1-4503-2188-4 ...$15.00.

algorithm in use. This problem is particularly acute with
scale-up graph processing: using a single system to process
graphs. Scale-up graph processing using a single multicore
machine with the graphs held in memory or on disk repre-
sents an attractive alternative to clusters [1] but is affected
even more by the locality problem as large graphs must of-
ten be held on disk, rather than being distributed across the
random access memories of a large cluster of machines with
scale-out approaches [2, 3]. Figure 1 illustrates the different
speeds of storage media for sequential and random access,
for an example system with 32 AMD Opteron 6272 cores, a
3TB magnetic disk and one 200GB PCI Express SSD. Mov-
ing from RAM to SSDs to magnetic disks means larger and
cheaper storage at the expense of much reduced performance
for random access.

A storage-centric viewpoint would suggest that the solu-
tion to this problem lies in recognizing that graphs represent
a unique workload and therefore should be treated as such
by adopting novel ways to access graph structured data. We
approach this problem from two different aspects and this
paper details two different efforts in this direction. One ap-
proach is specific to graphs stored on SSDs and accelerates
random access using a novel prefetcher: the (R)un(A)head
(S)SD (P)refetcher or RASP [4]. The second approach takes
a fresh look at how graphs are accessed and suggests that
trading off the low cost of random access for the approach
of sequentially streaming a large set of (potentially unre-
lated) edges can be a winning proposition under certain cir-
cumstances: leading to a system for graphs stored on any
medium (main-memory, SSD or magnetic disk) called X-
stream. RASP and X-stream therefore take - diametrically
opposite - storage centric viewpoints of the graph processing
problem. RASP is a system being developed at University
of Cambridge, UK led by the first author; while X-stream
is under development at EPFL in Switzerland led by the
second author. However, they share common roots and are
being developed collaboratively with the common vision of
improving storage subsystem performance when processing
graphs. After contrasting the approaches and demonstrat-
ing the benefit of each, this paper ends with a description
of planned future development of an online algorithm that
selects between the two approaches, possibly providing the
best of both worlds.

2. IVEC
Designing storage related data structure for graph pro-

cessing requires requires an appropriate abstraction of graph

algorithms. This lets us ignore details of specific algorithms

Medium
Read (MB/s) Write (MB/s)

Random Sequential Random Sequential
RAM 567 2605 1057 2248
SSD 22.64 355 49.16 298
Disk 0.61 174 1.27 170

Note: 64 byte cachelines, 4K blocks (disk random), 16M chunks
(disk sequential)

Figure 1: Sequential access vs. Random access

and implementations, while focusing purely on the tradeoffs
made on the storage front. We therefore introduce the it-
erative vertex-centric (IVEC) programming model, a level
of abstraction that we believe satisfies this purpose. The
programming model is illustrated in Figure 2. The IVEC
model consists of two basic functions: the scatter function
takes a vertex’s state and using it generates updates to be
propagated along the edges (lines 9–15). The gather func-
tion takes the updates on a vertex’s incoming edges and uses
them to update the state of the vertex (lines 17–24). The
main loop alternately runs through an iterator over vertices
that need to scatter state and one over those that need to
gather state (lines 2–6). The scatter function conditionally
adds to the gather iterator and the gather function condi-
tionally adds to the scatter iterator.
The interface to a fairly large number of systems can be

mapped onto the IVEC model. For example, distributed
graph processing systems such as Pregel [2] and Power-
graph [3] explicitly support this model. Systems for sin-
gle machines such as Graphchi [1] also export - as an op-
tion - a scatter-gather model. Higher level abstractions for
analyzing the semantic web can also, interestingly enough,
be mapped onto this abstraction [5]. Systems that do not
explicitly do scatter gather can also be mapped onto this
model. For example most implementations of graph traver-
sal algorithms such as breadth-first search (BFS) scatter
updates from the BFS horizon: the currently discovered
but not processed nodes. These are then gathered by re-
ceiving vertices to expand the horizon. The IVEC model
therefore also describes work that focuses purely on graph
traversals [6, 7, 8]. Since the IVEC model allows specifica-
tion of policy (what needs to be done) but does not restrict
mechanism (how to do it), it adequately abstracts many
of the differences in implementations across these systems.
For example, most of the aforementioned implementations
of breadth-first search directly follow edges in the scatter
step, access the destination vertex and add it to scatter it-
erator for processing. The IVEC model also applies to sys-
tems heavily focused on optimizing iterators such as Green
Marl [9]. Although a limitation of the IVEC model is that
it cannot capture algorithms that require asympototically
more state than vertices, such as all pairs shortest paths
and triangle counting, we note that it can still be used to
express approximate versions of the same algorithms.
The IVEC model suffers from random access to the edges

of the stored graph in lines 10 and 19. This is regardless
of how the iterators are implemented and a more serious
problem than access to vertex data by virtue of the fact
that edge data is usually far more voluminous than vertex

data for most graph processing workloads today.

3. RASP
The run-ahead SSD prefetcher (RASP) is targeted at im-

plementations of the IVEC model that execute on graphs

while not done { 1

// Iterators 2

for all vertices v in ScatterIterator { scatter(v) } 3

for all vertices v in GatherIterator { gather(v) } 4

} 5

6

//scatter step 7

scatter(v) 8

{ 9

for all edges e out of v { 10

e.update = User_defined_scatter(v, e) 11

if e.update.need_gather { 12

GatherIterator.add(e.dest) 13

}}} 14

15

//gather step 16

gather(v) 17

{ 18

for all edges e into v { 19

v = User_defined_gather(v, e.update) 20

if v.need_scatter { 21

ScatterIterator.add(v) 22

}}} 23

Figure 2: Iterative vertex-centric programming

while not done { 1

// Iterator 2

for all vertices v in ScatterIterator { scatter(v) } 3

} 4

5

//scatter step 6

scatter(v) 7

{ 8

for all edges e out of v { 9

e.update = User_defined_scatter(v, e) 10

v = User_defined_gather(v, e.update) 11

if v.need_scatter { 12

ScatterIterator.add(v) 13

}}} 14

Figure 3: IVEC model used in RASP

stored in solid state drives. RASP is heavily focused on
graph iteration, particularly the challenging problem of
graph traversals and implements a subset of the IVEC model
shown in Figure 3. The key difference is that the gather
phase is folded into the scatter phase, with vertices at the
other end of outgoing edges being accessed directly to prop-
agate updates. RASP addresses the problem of random ac-
cess to outgoing edges at line 9 in Figure 3.

3.1 Storage
RASP is targeted at graphs stored on SSDs. SSDs are

much faster than magnetic disks but are still much slower
than memory as Figure 1 illustrates. It therefore makes a
design decision: place vertex data entirely in main memory
and leave edge data on the SSD, fetched on-demand into
main memory when processing the scatter step. This is mo-
tivated again by the fact that edge data is more voluminous
that vertex data and therefore storing vertex data in main
memory is both feasible and eliminates the problem of ran-
dom access to vertex data were it to be stored in the SSD.
Figure 4 illustrates this tradeoff in RASP. The vertex data
in memory includes an index that specifies, for each vertex,
the location of its clustered edges on the SSD.

This is a practical tradeoff, illustrated by Figure 5 that
shows the memory usage for computing weakly connected
components (WCC). The majority of data resides on the
SSD and a much smaller fraction of data must reside in

Figure 4: Graph Data Distribution in RASP

Graph Vertices Edges RAM SSD
Twitter [10] 52M 1.6B 1.18GB 8.4GB
Erdos-Reyni [11] 20M 2B 0.45GB 10.4GB
Scale-free-small [12] 32M 1.28B 1.10GB 12GB
Scale-free-large [12] 1B 40B 24GB 315GB

Figure 5: RASP Memory usage WCC

RAM.

3.2 Prefetcher
The core component of RASP, the prefetcher, is driven by

the observation that an SSD can simultaneously handle a
number of outstanding random requests without penalizing
individual ones. This is very unlike traditional magnetic
media where the penalty of having to move disk heads to
service a stream of random requests requires queuing them
and servicing them one by one. Figure 6 shows the effect of
increasing the number of outstanding requests for 4K pages
to the SSD (known as queue depth), measured on the same
system as used for Figure 1. Using 32 outstanding requests
results in a peak random access bandwidth of approximately
177 MB/s, about 8 times the random access bandwidth with
one outstanding request shown in Figure 1.
Therefore, although the requests at line 9 in Figure 3 may

be random, if we could know the request stream in advance
prefetching from the SSD becomes possible due to its abil-
ity to service these random requests simultaneously without
affecting the latency of servicing any individual request.
The second key building block (and contribution) of

RASP is an elegant way to derive this request stream by
looking ahead during execution of the graph algorithm. The
information needed in already encapsulated in the Scat-

terIterator that is used by the system to locate the next
vertex to process and therefore an algorithm independent

 0

 50

 100

 150

 200

 1 4 16 64 256 1024

M
B

/s

Queue depth

Figure 6: Increasing Random Read Bandwidth with Queue
Depth

Graph Base RASP MT(8) RAM
Twitter 36.08 6.36 7.17 2.31
Erdos-Reyni 80.96 6.03 11.30 4.11
Scale-free-small 88.56 10.77 15.74 3.95
Scale-free-large >2.5 days 402.56 >2 days cannot fit

Figure 7: Runtime (mins) for WCC

way to derive the needed vertex stream is to look ahead in
the scatter iterator to locate the set of vertices, whose edges
will be required in the immediate future when processing the
scatter step. The prefetcher then runs ahead of the compu-
tation and issues prefetch requests for the edges correspond-
ing to these vertices and hence the name: (R)unahead (S)SD
(P)refetcher or RASP. For example, in algorithms such as
breadth-first search, the iterator is a FIFO queue that is
read by the prefetcher to issue requests to the SSD, while
being careful to remain within a window that does not ex-
ceed the capability of the SSD and the virtual memory page-
cache. This capability is the number of outstanding requests
without queuing delay (usually 32 outstanding requests, as
shown in Figure 6).

3.3 Key Results
RASP greatly enhances the capability of storage subsys-

tems such as SSDs when processing graph algorithms, effec-
tively hiding their much larger latency than random access
memory. To demonstrate this, we allocated a 2GB main
memory cache for the data stored on SSD in Figure 5. The
majority of data therefore continues to reside on the SSD.
We then computed weakly connected components for the
graphs in Figure 5, the absolute runtimes are shown in Fig-
ure 7. RASP results in a speedup varying (across graphs)
from 8x-13X. Also included in the table is the running time
of the baseline with multithreading (using all the available
8 cores) in the column labeled MT-8: an alternative way
to work around large random access latencies with stor-
age [8]. RASP using a single thread of computation is often
more effective at working around storage bottlenecks. Fi-
nally the last column includes the running time with the
entire graph loaded into memory (this is not possible for the
largest graph). RASP allows the runtime to approach that
of executing purely in memory, illustrating its effectiveness
at hiding the random access bottleneck to the SSD.

3.4 Problems
RASP clearly provides impressive speedups for graphs

processed from SSD, approaching the performance of ran-
dom access memory at a fraction of the cost. This is made
possibly by combating the inefficiency of random access
through prefetching. There are however some aspects of
RASP that stand in the way of it being a perfectly general
solution to the problem of random access to edges in the
IVEC model.

• RASP requires pre-processing the edges of a graph
into a sorted and indexed format, the current imple-
mentation uses the compressed sparse row (CSR) for-
mat. Pre-processing is not cheap: the scale-free graph
with 40 billion edges is initially generated as an un-
ordered edge list and took approximately 6 hours to
pre-process into a sorted format.

while not done { 1

// Iterators (note: sequential access to edges) 2

for all edges e in Graph { scatter(e) } 3

for all edges e in GatherIterator { gather(e) } 4

} 5

6

//scatter step 7

scatter(e) 8

{ 9

v = e.src 10

if v.need_scatter { 11

e.update = User_defined_scatter(v, e) 12

if e.update.need_gather { 13

GatherIterator.add(e) 14

}} 15

16

//gather step 17

gather(e) 18

{ 19

v = e.dst 20

v = User_defined_gather(v, e.update) 21

}} 22

Figure 8: Iterative vertex-centric programming in X-stream

• RASP is specific to SSDs. It is, by design, inapplicable
to magnetic disks and to graphs stored completely in
main memory. In the latter case, random access to
fetch data into the CPU cache can become a problem.

4. X-STREAM
X-stream is a system that is built around the observa-

tion (supported in Figure 1) that sequential access to any
medium is always faster than random access. X-stream
therefore restructures the IVEC model to replace iteration
over vertices with iteration over edges, shown in Figure 8.
We eliminate random access to edges in the scatter phases
by removing the scatter iterator and instead streaming all
the edges of the graph. We retain the gather iterator, which
becomes a sequential list of edges with updates instead of an
iterator over vertices. Although we have changed the man-
ner of execution of the IVEC model, we have not changed
the interface exposed to the programmers, which continues
to be vertex-centric scatter gather.
X-stream does not use a scatter iterator to avoid having

to use random access to locate outgoing edges of vertices
that have updates to send out. This can result in accesses
to very many more edges than necessary in the scatter step.
In return, it can operate using a purely streaming model,
exploiting the available sequential bandwidth of storage in
the system (Figure 1).

4.1 Data Structures
At the core of X-stream are streaming partitions. The

vertices of the graph are divided into partitions, the only
criterion being an equal number of vertices in each partition.
There is no need manage the quality of the partitions such
as minimizing the number of edges that cross them. The
operation of a streaming partition in shown in Figure 9. It
includes the vertex data for the partition, a list of edges with
source vertex in the streaming partition and a list of updates
(separated from the edges they belong to) with target vertex
in the streaming partition. During the scatter phase, the list
of edges is streamed and, if necessary an update is generated.
X-stream replaces random access into the edges with ran-

dom access into the vertex data of the streaming partition
(Figure 8 lines 11 and 21). This is motivated by the fact that

Vertices

Edges

Updates

Gather Scatter

Scatter

Figure 9: Streaming Partitions in X-stream

edges are usually far more numerous than vertices. Further,
a key insight in X-stream is that the number of streaming
partitions may be chosen such that the vertex data fits in
cache (cpu cache for main memory graphs and main memory
for on-disk graphs).

4.2 Key Results
X-stream is highly scalable and its basic principle applies

across main-memory, SSD and disk as all three are amenable
to streaming. Further, X-stream admits simple multithread-
ing as streaming partitions can be processed independently
of each other. Three properties of X-stream are of particular
interest in this paper (with regard to the problems pointed
out in Section 3.4).

First, X-stream does not depend on a sorted edge list,
edges may be streamed in any order. This leads to the inter-
esting consequence that X-stream can produce results from
the graph faster than one can sort its edge list, as shown in
Figure 14, where we compare the runtime to sort a graph
in memory using quicksort as opposed to identifying weakly
connected components from the unordered edge list. The
single-threaded experiment uses scale-free graphs with the
factor on the X-axis: a factor of n means a graph with 2n

vertices and 2n+4 edges.
Second, X-stream applies to all three types of storage:

main-memory, SSD and magnetic disk. Figure 10 shows how
X-stream scales smoothly across all three storage media on
a system with 16 GB main memory, 200 GB SSD and 3
TB magnetic disk. We switch to slower and larger storage
(marked by arrows) when the graph can no longer fit on the
currently chosen faster but smaller storage.

Finally, X-stream does not require any part of the graph
to fit in memory. The only requirement is choosing the num-
ber of partitions to be large enough to allow the vertex data
of a partition to fit in memory. This requires less memory
than RASP and is also competitive to the recent Graphchi
system, that tries to do sequential accesses to partitions of
the graph on disk, but requires the edges in any partition
(far more numerous than vertices) to fit in memory. Fig-
ure 11 shows the result, a reproduction of the Graphchi ex-
periments in [1] and a comparison with X-stream. Graphchi
requires pre-processing time to sort shards, which X-stream
does not. Further, execution time in Graphchi is also higher.
This is attributable to two factors. First, partitions (shards)
in Graphchi are sorted by source vertex. However locating
the incoming edges to absorb updates in the gather step
(Figure 2, line 19) requires re-sorting the shard by desti-
nation vertex (a component of runtime, shown in the last
column). Another contributor is the fact that Graphchi re-
quires a higher number of partitions. It needs to access all

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 16 18 20 22 24 26 28 30 32

R
u
n
ti
m

e
 (

s
)

Scale

SSD

disk

WCC

Figure 10: X-stream across different storage media

Pagerank [13] on Twitter [14]
System Partitions Preproc. Time Re-sort
X-stream 1 none 545.28s –
Graphchi 32 825.70s 1320.13s 989.75s

WCC on scale 27
System Partitions Preproc. Time Re-sort
X-stream 1 none 1486.74s –
Graphchi 24 2359.36s 4020.13s 2169.24s

Figure 11: X-stream compared to Graphchi

 0.0625

 0.25

 1

 4

 16

 64

 256

 16 17 18 19 20 21 22 23 24

R
u

n
ti
m

e
 (

s
)

RMAT scale

RMAT graphs, one thread

quicksort
WCC

Figure 14: X-stream vs. Sorting

the partitions simultaneously (by design) and therefore its
sequential accesses are more spread out, leading to lower
utilization of the streaming bandwidth of the SSD than X-
stream. This is demonstrated using a 4 minute snapshot
from iostat in Figure 12.

4.3 Problems
X-stream needs to trade off fewer random accesses to the

edge list in the scatter phase for the sequential bandwidth
of streaming a large number of potentially unrelated edges.
This can lead to X-stream performing suboptimally with
some graphs. Figure 13 shows the spread of X-stream’s per-
formance on various real world graphs. The table includes
the number of supersteps and fraction of wasted edges. The
former is the number of times the main set of loops (Fig-
ure 8 lines 1–5) are executed. The latter is the fraction of
streamed edges (Figure 8 line 8) wasted because the vertex
had no update to send (Figure 8 line 11). We note that
X-stream performs poorly on the DIMACS and Yahoo-web
graphs. In both the cases, the number of supersteps is ex-
tremely high. Although we did not get the data for the
Yahoo webgraph, it ran for upwards of 500 supersteps. Also
the DIMACS graph shows a high fraction of wasted edges.
This problem with X-stream can be understood in terms of

the fact that the number of supersteps for WCC is bounded
by the diameter of the graph (the length of the longest short-
est path). For graphs of high diameter, not only does X-
stream take a longer time to finish but also the number
of active vertices at each superstep is low (lower diameter
means better connectivity) in turn leading to more wasted
edges. Our initial design for X-stream was based on the ob-
servation that such graphs are in fact rare in practice: most
graphs have a small diameter and in fact many real world
graphs demonstrate shrinking diameter with the addition of
vertices [18].
Nevertheless we would like to mitigate the impact of high

diameter graphs in X-stream. We note that RASP does not

while not done { 1

// Iterators 2

one of { 3

for all vertices v in ScatterIterator {scatter(v)} 4

for all edges e in Graph { scatter(e) } 5

} 6

for all edges e in GatherIterator { gather(e) } 7

} 8

//scatter step for edge 9

scatter(e) 10

{ 11

v = e.src 12

if v.need_scatter { 13

e.update = User_defined_scatter(v, e) 14

if e.update.need_gather { 15

GatherIterator.add(e) 16

}} 17

// scatter step for vertex 18

scatter(v) 19

{ 20

if v.need_scatter { 21

e.update = User_defined_scatter(v, e) 22

if e.update.need_gather { 23

GatherIterator.add(e) 24

}} 25

//gather step 26

gather(e) 27

{ 28

v = e.dst 29

v = User_defined_gather(v, e.update) 30

possibly { 31

if v.need_Scatter { 32

ScatterIterator.add(v) 33

}}} 34

Figure 15: Hybrid model with X-stream

have any problem with such graphs as it accesses exactly
the required edges and therefore does no wasted work on
any iteration.

5. A POSSIBLE UNIFIED APPROACH
We are currently exploring the possibility of unifying the

approaches in RASP and X-stream. Our planned solution is
to allow streaming partitions to sort their associated edges
and access them randomly. This hybrid execution of the
IVEC model is illustrated in Figure 15. The runtime chooses
to either iterate through vertices to scatter updates from
those vertices that need to scatter updates or simply streams
all the edges scattering updates along those edges whose
source vertex has an update. Some salient features of the
planned approach are:

• The starting point is X-stream and the decision of
whether to scatter using an index on the edges or to
simply stream them is made dynamically on a per-
partition basis

• On the first instance of scattering through an index the

 0

 100

 200

 300

 400

 500

R
e
a
d
s
 (

M
B

p
s
) aggregate: 247.03

GraphchiX-stream

aggregate: 112.58

GraphchiX-stream

 0

 100

 200

 300

 400

 500

W
ri
te

s
 (

M
B

p
s
) aggregate: 102.17

GraphchiX-stream

aggregate: 46.29

GraphchiX-stream

Figure 12: SSD Utilization for Pagerank on Twitter

Graph Vertices Edges T s w
Memory
amazon0601 [11] 403K 3.3M 00:00:00.34 18 0.63
cit-Patents [11] 3.7M 16M 00:00:02.06 20 0.48
dimacs-usa [15] 23M 58M 00:08:12.31 6262 0.98
soc-livejournal [11] 4.8M 68M 00:00:04.71 12 0.56
SSD
Friendster [11] 65.6M 1.8B 01:03:57.75 23 0.61
sk-2005 [16] 50.6M 1.9B 01:14:07.93 24 0.65
Twitter [14] 41.7M 1.4B 00:28:31.53 15 0.53
Magnetic Disk
Friendster 65.6M 1.8B 02:09:08.20 23 0.61
sk-2005 50.6M 1.9B 03:00:57.20 24 0.65
Twitter 41.7M 1.4B 01:08:33.46 15 0.53
yahoo-web [17] 1.4B 6.6B > 1 week

Figure 13: X-stream performance on various graphs: runtime
hh:mm:ss.ss (T), Supersteps (s) and Wasted edges fraction(w)

edges in the partition are sorted and an index built on
them

• We intend to start with a streaming approach and
based on the fraction of wasted edges observed, switch
to an indexed random access approach.

Once a streaming partition has switched to random access,
we are free to apply RASP to mitigate the effect of ran-
dom access through prefetching. We note that at this point
all the needed (subset of) vertex data is in memory. This
solves the problem of needing to fit all vertex data of RASP
into memory. Also, we can then prefetch needed edges from
main memory into CPU cache rather than being restricted
to prefetching edges only from SSD into main memory. This
partially resolves the restriction of RASP to SSDs, we still
restrict ourselves to streaming for magnetic disks. Switch-
ing to random access allows X-stream to avoid problems
with graphs of high diameter, where it can avoid streaming
wasted edges and finish quicker.

6. CONCLUSION
We have argued in this paper that storage is the determi-

nant for performance in graph processing. Along these lines,
we have presented two systems under development that aim
to improve the interaction between graph algorithms and
storage. Each system individually represents a significant
step forward in the state of the art and we believe that an
amalgamation of the two ideas can finally remove storage
bottlenecks from the critical path in high performance graph
processing systems.

Acknowledgment. The research is part funded by EU
grant FP7-ICT-257756 and EPSRC grant EP/H003959.

7. REFERENCES

[1] Aapo Kyrola and Guy Blelloch. Graphchi: Large-scale
graph computation on just a PC. In OSDI. USENIX
Association, 2012.

[2] Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In SIGMOD, pages 135–146. ACM,
2010.

[3] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph:

distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30. USENIX Association,
2012.

[4] Amitabha Roy, Karthik Nilakant, Valentin Dalibard,
and Eiko Yoneki. Mitigating I/O latency in SSD-based
graph traversal. Technical Report UCAM-CL-TR-823,
University of Cambridge, November 2012.

[5] Philip Stutz, Abraham Bernstein, and William Cohen.
Signal/collect: graph algorithms for the (semantic)
web. In ISWC - Volume Part I, pages 764–780.
Springer-Verlag, 2010.

[6] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun.
Efficient parallel graph exploration on multi-core CPU
and GPU. In PACT, pages 78–88. IEEE Computer
Society, 2011.

[7] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and
David A. Bader. Scalable graph exploration on
multicore processors. In SC, pages 1–11. IEEE
Computer Society, 2010.

[8] Roger Pearce, Maya Gokhale, and Nancy M. Amato.
Multithreaded asynchronous graph traversal for
in-memory and semi-external memory. In SC, pages
1–11. IEEE Computer Society, 2010.

[9] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle
Olukotun. Green-marl: a DSL for easy and efficient
graph analysis. In ASPLOS, pages 349–362. ACM,
2012.

[10] http://twitter.mpi-sws.org/.

[11] http://snap.stanford.edu/.

[12] http://www.graph500.org/.

[13] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford
University, 1998.

[14] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is twitter, a social network or a news
media? In WWW, pages 591–600. ACM, 2010.

[15] http://dimacs.rutgers.edu/Challenges/.

[16] http://www.cise.ufl.edu/research/sparse/

matrices/LAW/sk-2005.html.

[17] http://webscope.sandbox.yahoo.com/.

[18] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos.
Graph evolution: Densification and shrinking
diameters. ACM Trans. Knowl. Discov. Data, 1(1),
March 2007.

