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Distributed Systems 

 Distributed systems have seen huge success 

 They touch many parts of our daily lives 

 Faults are costly 

 Monitoring and maintenance is difficult 

 Network Provenance is a proposed solution 
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Our Contribution 

 Leverage the dependency graph of network provenance 

for a substructure mining application 

 Find common execution patterns 

 Use them as a feature set to identify misbehaving nodes 

 Use heuristics to find substructures more quickly 

 Implement with a graph database, neo4j 

 Perform extensive evaluation 
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Example: Network Provenance 
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Example: Provenance Graph 
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Example: Provenance Graph 
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Example: Provenance Graph 
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Example: Provenance Graph 
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Example: Provenance Graph 

 No Multi Hop Path 
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Substructure Mining 

 Substructure mining is the search for “good” subgraphs 

within a graph or set of graphs 

 

 Two parts: 

 Searching the space of possible substructures 

 Finding instances of an individual substructure 



Substructure Mining: Substructures 
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Substructure Mining: Instances 
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Subdue 

 Classical substructure mining algorithm (N.S.Ketkar et al., 

2005) 

 Substructures are evaluated based on how well they 

compress the full graph 

 Compression calculated based on non-overlapping instances 

 Subdue uses a guided beam search to search the space of 

possible substructures 

 Structures from a previous iteration are expanded, tested, and 

only the best of the expanded go on to the next iteration 

(beam size = number of the best substructures) 



Substructure Mining: Subdue 
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Substructure Mining: Subdue 
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Heuristics 

 Limiting the number of substructures to search 

 Duplicate Substructure Reduction 

 Outward Expansion 

 

 Speeding up the search for substructure instances 

 Infrequent Start Vertex 

 Start Vertex Reuse 



Duplicate Substructure Reduction 

 During the expansion of substructures you duplicate 

substructures are created and tested.  

 We incorporated aspects of Gspan (Yan and Han, 2003) 

to help reduce the number of duplicates 
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Outward Expansion 

 When determining new substructures to search for, only 

expand using outgoing edges 

 A possible problem is that certain types of substructures 

will be ignored. 
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Infrequent Start Vertex 

 Testing a substructure instance starts with a single vertex 

 Pick start vertices based on the least frequently occurring 

vertex type in the substructure 
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Start Vertex Reuse 

 Good substructures get expanded to new substructures 

 Save the subset of start vertices which have a match  

 New substructures can take advantage of the information 

from the previous substructure 

A 

B B 

A 
A 

B 

B 
B 

B 

B 



Experimental Setup 

 Use 5 different inferred intra-domain topologies from the 

Rocketfuel project (Spring et al., 2002) 

 

 

 

 

 

 

 Use a beam size of 10 with 100 expansions maximum 

 Evaluate run time, quality of substructures, and effect of 

beam size 

Dataset ASN Nodes Links |V(G)| |E(G)| 

1 1221 108 306 16,227 28,090 

2 1755 87 322 23,015 40,725 

3 3257 161 656 52,848 94,568 

4 6461 141 748 73,316 134,072 

5 1239 315 1,944 317,066 592,038 



Experimental Runs 

 DB-OPTIMIZED: all heuristics using Neo4j 

 MEM-OPTIMIZED: all heuristics using in memory version 

 No-DUP-REDUCE: all heuristics except duplication 

reduction 

 No-EXPAND-OUT: all heuristics except outward 

expansion 

 No-REUSE: all heuristics except reuse of start vertices 

 BASE-LINE: no heuristics 

 



Results (Run Time) 

 Each heuristic improves the run time 

 DB version consistently outperforms the memory version 

 



Results (Compression) 

 Top compression results the same for each run 

 



Conclusion 

 Contributions 

 Apply substructure mining to network provenance 

 Implement algorithm using the neo4j graph database 

 Propose heuristics which take advantage of provenance 
structure 

 Perform extensive evaluation that shows strength of our 
approach 

 Future Work 

 Try other protocols 

 Use more advanced substructure mining techniques 

 Take advantage of the tree like structure of our graphs 

 Explore substructure mining for dynamic provenance graphs 

 Implement  a complete system to test using misbehaving nodes 
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