ORACLE

ORACLE

Early Experiences in Using a
Domain-Specific Language for
Large-Scale Graph Analysis

Sungpack Hong, Jan van der Lugt,
Adam Welc, Raghavan Raman,
Hassan Chafi

Oracle Labs

http://tinyurl.com/olabs-grades2013-2 '

. Large-Scale Graph Analysis

= Analyzing large-scale graph data requires special frameworks
— Data does not fit in single address space =» Distributed computation
— Lots of random-access = Frequent communication

= There are frameworks for large-scale graph analysis:

— GraphLab (CMU), Pregel/Giraph (Google/Apache), Grappa (U.
Washington), ...

— Each framework adopts its own API / programming model

= However, such programming models may differ from the way graph
algorithm is designed

ORACLE

3 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |

. Giraph

= A scalable graph analysis framework (Apache)
— Aclone of Google’s Pregel [SIGMOD’10]
— Running on top of Hadoop (HDFS)

= Giraph’s programming model = Traditional algorithm design

— Vertex-centric — Imperative
— Message-passing - Random-access memory
— Bulk-synchronous _ i
while @ not empty do
dequene v — Q;
VertexCompute (..) { push v — S;
process_rcvd msgs () & Vertex- foreach neighbor w of v do
. ‘ e \ o e // w found for the first time?
do_local computation () ‘~\\ if dw] < 0 then
: \ \\\ cnquene w » (‘)Z
send_msgs ()) \ \ I djw] — d[v) + 1;
} W(orkef\ , \é\ig;l;irs AR
Prs\cess) SN \\ // shortest path to w via v?
. \\\\\ if ll{ll': = 41[!'3 + 1 then
Time Step n 1 ‘\\\

B reseonss O \() O \(‘j @O ORACLE

. Our Approach: Domain-Specific Language

= Green-Marl
— ADSL for graph analysis [ASPLOS 2012]
— Designed for intuitive description of graph algorithms

Vertex-Centric,
Bulk-Synchronous,
Explicit Message Passing

Giraph
class pagerankVertex extends .?

{
void compute (...)
{ double p val = (1-d) /N ;
for (message<..> m : Recvd)

{
p_val += m.getValueFloat () *d

Green-Marl Green-Marl compiler
}
sendNbrs (new Double (p_val) /

-
L

diff = 0;
Foreach (n: G.Nodes) ({
. }
Imperative Random-Access }
Program

Double p rank= (1-d) / N +
d * Sum(w: n.InNbrs) {
w.PR/w.Degree () };

5 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Green-Marl Example: Pagerank

Procedure pagerank(G: Graph, e,d: Double,

max: Int, PR: Node_ Prop<Int>)

{
Int iter = 0;
Double diff = 0;
Double N = (Double) G.NumNodes ()
G.PR = 1 / N;
Do {

diff = 0;

iter ++;

Foreach (n: G.Nodes) {

Double val = (1-d) / N +
d * Sum(w: n.InNbrs){ w.PR/w.Degree()) };

diff 4= |n.PR - val]l;
n.PR <= val;
}
} While (diff>e && iter<max);

}

//
//

//
//
//
//
//

//
//

//

G is a graph
PR is a node property

Initialize PR
Main-1oop

For all nodes 1in G
compute pagerank by

iterating neighborhoods

compute global difference
update PR at the end of loop

4

loop until converged

C-like procedural

High-level operations

syntax on abstract data-type

6 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |

Easy and Intuitive

Programming

ORACLE

http:/tinyurl.com/olabs-grades2013-2

. Compiler Transformation

Explicit Loop Construction

Procedure pagerank (G: Graph, ..)

{

Int iter = 0;
Double diff =
Double N =

[G.Pr =

0;
(Double)
1/ NJ

G.numNodes

) .

~

e e

Do {
diff = 0;
iter++;
Foreach (n: G.Nodes) {

Double val = (1-d) / N +

dﬂSum(w:

n.Ianrs){w.PR/w.Degree())}#

{
\[%oreach(n:
n.PR = 1 / N;

g

Explicit parallel loops are
detected / constructed

G.Nodes) {

—

Node_Prop<Double> PR nxt; |

diff += |w.PR — wval];

[W.PR <= val ; }
}

} While
}

((diff>e) && (iter<max));

Do {

Foreach (n: G.Nodes) {

Double S = 0;
Foreach (w: n.InNbrs)

_S += w.PR/w.Degree();
Double val = (1-d) / N + d*

_S;

7

[W.PR_nxt = val;]

}
rForeach(n: G.Nodes) {

Syntax
Expansion

7 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |

}

/L W.PR = W.PR nxt;
}

} While ((diff>e) &&

(iter<max)) ;

. Compiler Transformation

Optimization and Transformation

N_P<Double> tmpS;
Foreach (n: G.Nodes) { Foreach (n: G.Nodes) {
Double S = 0; n. tmpS = 0;
[Foreach (w: n.InNbrs)] R <
S += w.PR/w.Deqgree () ; / Foreach (w: G.Nodes) { I
Double val = (1-d) / N + d* _S; : Foreach (n: w.OutNbrs) |
diff += |W.PR - vall; I n. tmpS += w.PR/w.Degree () ; I
W.PR nxt = val; _} __________________ /'
} Foreach(n: G.Nodes) ({
Applyaset (_)f > Double val = (1-d)/N + d*n. tmpS;
Transformation Rules Giff += |W.PR - vall;

W.PR nxt = val;

@ Pregel-Canonical Form 7

Remote read (Pull) is
replaced with remote
8 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. i r i te (P u S h)

. Compiler Transformation
Finite State Machine (FSM) Construction

- ~
- ~
- ~o

Further
Optimize
FSM

[Iter = 0; N =1/ numNodes();

Is First €<false

[1f (I_isFirst)
[diff = 0; Iter ++;

[thisPR=1/N;]

//If (1_isFirst) \
. for (Message m: getRcvd())

[diff = 0; Iter ++;
,' 7

[this._tmpS =0;

this._tmpS += m.doubleVal;

val=(1-d)/N+d*_tmpS;
diff = d.PR —val,

sentMsg(this.PR / getDegree()); Global.put (“diff’, DoubleSum(diff));

: :
ﬂor (Message m: getRcvd()) \
this._tmpS += m.doubleVal; '

}

this._tmpS = 0;

sentMsg(this.PR / getDegree()); /

val=(1-d)/N+d* _tmpS;
diff = d.PR — val;
Global.put (“diff”, DoubleSum(diff));

1
]
1
1
7
/7
4
,/
pa

Construct FSM :
- Vertex-parallel State
- Sequential State

~

. Compiler Transformation

Code Generation

[Iter = 0; N = 1/ numNodes();
v

[tispr=1/N;

If (!_isFirst)
diff = 0; Iter ++;

[

If (1_isFirst) {
for (Message m: getRcvd())

public class pagerankMaster extends .. { Maste
public void compute (..) {
switch(state) {
case 1:
}
broadcast state to workers(state);
) Ve

public class pagerankVertex extends
public void compute (..) {

this._tmpS += m.doubleVal;
val=(1-d)/N+d*_tmpS;
diff = d.PR —val;
Global.put (“diff", DoubleSum(diff)); ...
}
this._tmpS=0;

sentMsg(this.PR / getDegree());

[whie(...)

_state = receive state from master();
switch(state) {
case 1: do state 1(); break-
Message
public class pagerankMsg extends .. {
double dl; |
a Vertex

{..}

public serialize(..)

Datg

r

rtex

—

(_inaiize public class pagerankVertexData extenus—:
double PR;
public seralize(..) {..}
Generate | : Reader
: public class pagerankReader . p
glraph) | axtends .. { ;
application : : : Writer
’ |pub11c class pagerankWriter |
. ’ exte .
And its | public iﬁaiz i ourary, Configuration
companion pa?eran obConfiguratic
classes

10 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

. Early Experience and Evaluation

= Methodology Pagerank,
Triangle Counting*,

Random Walk (Random Sampling)

v' Implement a few popular

algorithms with Green-Matrl
v" Feedbacks from external

graph analysis experts

v' Compile them into Giraph
LiveJournal and Twitter Graph
Giraph run on 80 workers (10
machines)
v Compare them with manual

Graph implenations

ORACLE

11 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. | http://tinyurl.Com/olabs-grade52013—2

. Productivity Benefits and Challenges

No boilerplate | _
= Shorter program codeatal .= Learning Curve

— Foreign language at first

Line of Codes G-M Sl i — Lack of user-community and
(UERIVED) :

documentation

Pagerank 19 188
Triangle Counting 14 168 _ _
mandom Walk c3 aan - Inherently sequential algorithm:
Sampling — There is no magic
: — The compiler emits translation
= Intuitive Programming Model | failure (and why)
— No low-level detall i =>» User still needs to re-design the

— Ease of management

| Benefits | | | Challenges |

12 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |

. Performance of Compiler-Generated Programs

= Decent Performance = Sub-optimal (yet)
— 0 ~17 % slower than manual — Adding more optimization
— TC: faster than first manual = Cannot overcome fundamental
g?r%'smentaﬁon (due to human limitation of the framework

— TC using Giraph crashes with high-
degree nodes.

1.4 1 1 1 ' | | 1
Manual EKZIKZZA

Generated I -

L

Zetetetetete%e 0% 0 020 0% %

D

Relative Runtime
A’

5L

o
(e
|
Re2e20%e20 020 20202 020 0202 20202 e
A’

ST

X

— *For TC, we filtered out
all high-degree nodes in
the graph

>

s

13 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |

. Other iIssues and discussions

Fast execution for
small(-er) graph

= Multiple Back-ends

Single in-memory
(Multi-threaded)

G\ |» {""ﬂ Giraph >

HDFS

Relational compiler GraphLab? \>
— —>| Grappa?
GraphX?
= Multiple Data-source
— Loading different formats
— Declaring graphs from random relationship
— Defining and filtering sub-graphs “Let entities A becomes

node, and relation B
becomes edge.”

ORACLE

14 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |

. Summary

= Using DSL for large-scale graph analysis
— Demonstrated possibility
— Promising productivity benefits
— Decent performance against manual implementation; being improved

= Future works
— Compiling into other backends
— System Integration: graph data acquisition and management

ORACLE

15 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |

. Acknowledgement

= We appreciate Sam Shah, Roshan Sumbaly, and Evion Kim at
LinkedIn for their valuable collaboration in this study.

ORACLE

16 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |

Hardware and Software

Engineered to Work Together

ORACLE

ﬂregel-CompatE)Ie Set (Set B)

e -
- ~
- ~o

SN
4 N\ \ |
Ly eul
ro/ Pregel- D
| <f:| Canonical b
\ / !
S ;

Automatic compiler
transformation (Set C)

Mechanical
transformation
without re-writing)

~
~.
~
~

Pregel
Programs

/
2
-
e
-
-

_/—

Equivalent?

~
I Ll

19 | Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

There exists an equivalent
program re-writing

In theory, set
A ==set B?

hat is the
practical

boundary of
et B?

When
becomes set
C ==set B?

