
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1 http://tinyurl.com/olabs-grades2013-2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2 http://tinyurl.com/olabs-grades2013-2

Early Experiences in Using a

Domain-Specific Language for

Large-Scale Graph Analysis

Sungpack Hong, Jan van der Lugt,

Adam Welc, Raghavan Raman,

Hassan Chafi

Oracle Labs

http://tinyurl.com/olabs-grades2013-2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3 http://tinyurl.com/olabs-grades2013-2

Large-Scale Graph Analysis

 Analyzing large-scale graph data requires special frameworks

– Data does not fit in single address space  Distributed computation

– Lots of random-access  Frequent communication

 There are frameworks for large-scale graph analysis:

– GraphLab (CMU), Pregel/Giraph (Google/Apache), Grappa (U.

Washington), …

– Each framework adopts its own API / programming model

 However, such programming models may differ from the way graph

algorithm is designed

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4 http://tinyurl.com/olabs-grades2013-2

Giraph

 A scalable graph analysis framework (Apache)

– A clone of Google’s Pregel [SIGMOD’10]

– Running on top of Hadoop (HDFS)

 Giraph’s programming model

– Vertex-centric

– Message-passing

– Bulk-synchronous

Worker

Process

Worker

Process

……

Vertex-

local data

VertexCompute(…) {

 process_rcvd_msgs()

 do_local_computation()

 send_msgs()

}

Time Step n

Time Step n + 1

 Traditional algorithm design

– Imperative

– Random-access memory

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5 http://tinyurl.com/olabs-grades2013-2

Our Approach: Domain-Specific Language

 Green-Marl

– A DSL for graph analysis [ASPLOS 2012]

– Designed for intuitive description of graph algorithms

Do {

 diff = 0;

 Foreach(n: G.Nodes) {

 Double p_rank= (1-d) / N +

 d * Sum(w: n.InNbrs){

 w.PR/w.Degree()};

 …

 }

}

class pagerankVertex extends …

{

 void compute(…)

 { double p_val = (1-d) /N ;

 for (message<…> m : Recvd)

 {

 p_val += m.getValueFloat()*d

 }

 sendNbrs(new Double(p_val) /

getNumNbrs);

 }

} Imperative Random-Access

Program

Green-Marl Giraph

Vertex-Centric,

Bulk-Synchronous,

Explicit Message Passing

Green-Marl compiler

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6 http://tinyurl.com/olabs-grades2013-2

Green-Marl Example: Pagerank

Procedure pagerank(G: Graph, e,d: Double, // G is a graph

 max: Int, PR: Node_Prop<Int>) // PR is a node property

{

 Int iter = 0;

 Double diff = 0;

 Double N = (Double) G.NumNodes();

 G.PR = 1 / N; // Initialize PR

 Do { // Main-loop

 diff = 0;

 iter ++;

 Foreach(n: G.Nodes) { // For all nodes in G

 Double val = (1-d) / N + // compute pagerank by

 d * Sum(w: n.InNbrs){ w.PR/w.Degree()) }; // iterating neighborhoods

 diff += |n.PR – val|; // compute global difference

 n.PR <= val; // update PR at the end of loop

 }

 } While (diff>e && iter<max); // loop until converged

}

C-like procedural

syntax

High-level operations

on abstract data-type

Easy and Intuitive

Programming

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7 http://tinyurl.com/olabs-grades2013-2

Compiler Transformation
Explicit Loop Construction

Procedure pagerank(G: Graph, …)

{

 Int iter = 0;

 Double diff = 0;

 Double N = (Double) G.numNodes();

 G.PR = 1 / N;

 Do {

 diff = 0;

 iter++;

 Foreach(n: G.Nodes) {

 Double val = (1-d) / N +

 d*Sum(w: n.InNbrs){w.PR/w.Degree())};

 diff += |w.PR – val|;

 w.PR <= val ;

 }

 } While ((diff>e) && (iter<max));

}

{

 …

 Foreach(n: G.Nodes) {

 n.PR = 1 / N;

 }

 Node_Prop<Double> PR_nxt;

 Do {

 ...

 Foreach(n: G.Nodes) {

 Double _S = 0;

 Foreach(w: n.InNbrs)

 _S += w.PR/w.Degree();

 Double val = (1-d) / N + d* _S;

 ...

 W.PR_nxt = val;

 }

 Foreach(n: G.Nodes) {

 W.PR = W.PR_nxt;

 }

 } While ((diff>e) && (iter<max));

}

Syntax

Expansion

Explicit parallel loops are

detected / constructed

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8 http://tinyurl.com/olabs-grades2013-2

Compiler Transformation
Optimization and Transformation

 ...

 Foreach(n: G.Nodes) {

 Double _S = 0;

 Foreach(w: n.InNbrs)

 _S += w.PR/w.Degree();

 Double val = (1-d) / N + d* _S;

 diff += |W.PR – val|;

 W.PR_nxt = val;

 }

 ...

 ...

 N_P<Double> _tmpS;

 Foreach(n: G.Nodes) {

 n._tmpS = 0;

 }

 Foreach(w: G.Nodes) {

 Foreach(n: w.OutNbrs)

 n._tmpS += w.PR/w.Degree();

 }

 Foreach(n: G.Nodes) {

 Double val = (1-d)/N + d*n._tmpS;

 diff += |W.PR – val|;

 W.PR_nxt = val;

 }

 ...

Apply a set of

Transformation Rules

n n

w w w

l n n

w w w

Remote read (Pull) is
replaced with remote

write (Push)

Pregel-Canonical Form

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9 http://tinyurl.com/olabs-grades2013-2

Compiler Transformation
Finite State Machine (FSM) Construction

Iter = 0; N = 1 / numNodes();

Init

this.PR = 1 / N;

this._tmpS = 0;

sentMsg(this.PR / getDegree());

Do

diff = 0; Iter ++;

for (Message m: getRcvd())

 this._tmpS += m.doubleVal;

val = (1 – d) / N + d * _tmpS;

diff = d.PR – val;

Global.put (“diff”, DoubleSum(diff));

…

while (…)

Finalize

If (!_isFirst)

{

 for (Message m: getRcvd())

 this._tmpS += m.doubleVal;

 val = (1 – d) / N + d * _tmpS;

 diff = d.PR – val;

 Global.put (“diff”, DoubleSum(diff));

 …

}

this._tmpS = 0;

sentMsg(this.PR / getDegree());

If (!_isFirst)

 diff = 0; Iter ++;

while (…)

_ is

First?
Yes

_is First false

Construct FSM :

- Vertex-parallel State

- Sequential State

Further

Optimize

FSM

Merge

States

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10 http://tinyurl.com/olabs-grades2013-2

Compiler Transformation
Code Generation

Iter = 0; N = 1 / numNodes();

Init

this.PR = 1 / N;

Do

Finalize

If (!_isFirst) {

 for (Message m: getRcvd())

 this._tmpS += m.doubleVal;

 val = (1 – d) / N + d * _tmpS;

 diff = d.PR – val;

 Global.put (“diff”, DoubleSum(diff)); …

}

this._tmpS = 0;

sentMsg(this.PR / getDegree());

If (!_isFirst)

 diff = 0; Iter ++;

while (…)

_ is First?
_is First false

public class pagerankMaster extends … {

 public void compute(…) {

 switch(_state) {

 case 1: …

 }

 broadcast_state_to_workers(_state);

 }

 …

}

public class pagerankVertex extends … {

 public void compute(…) {

 _state = receive_state_from_master();

 switch(_state) {

 case 1: do_state_1(); break;

 …

}

public class pagerankMsg extends … {

 double _d1;

 public serialize(…) {…}

}

Master

Vertex

public class pagerankVertexData extends … {

 double PR;

 public seralize(…) {…}

}

Vertex

Data

Generate

giraph

application

public class pagerankReader

extends … {

 ……

}

public class pagerankWriter

extends … {

 ……

}

Writer

Reader

public class

pagerankJobConfiguration extends

… {

 ……

}

Configuration And its

companion

classes

Message

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11 http://tinyurl.com/olabs-grades2013-2

Early Experience and Evaluation

 Methodology

 Implement a few popular

algorithms with Green-Marl

 Compile them into Giraph

 Compare them with manual

Graph implenations

Pagerank,

Triangle Counting*,

Random Walk (Random Sampling)

 Feedbacks from external

graph analysis experts

LiveJournal and Twitter Graph

Giraph run on 80 workers (10

machines)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12 http://tinyurl.com/olabs-grades2013-2

Productivity Benefits and Challenges

 Shorter program

 Intuitive Programming Model

– No low-level detail

– Less error-prone

– Ease of management

Line of Codes G-M Giraph

(manual)

Pagerank 19 188

Triangle Counting 14 168

Random Walk

Sampling

53 444

No boilerplate

code at all  Learning Curve

– Foreign language at first

– Lack of user-community and

documentation

 Inherently sequential algorithm:

– There is no magic

– The compiler emits translation

failure (and why)

 User still needs to re-design the

algorithm for giraph

Challenges Benefits

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13 http://tinyurl.com/olabs-grades2013-2

Performance of Compiler-Generated Programs

 Decent Performance

– 0 ~17 % slower than manual

– TC: faster than first manual

implementation (due to human

error)

 Sub-optimal (yet)

– Adding more optimization

 Cannot overcome fundamental

limitation of the framework

– TC using Giraph crashes with high-

degree nodes.

*For TC, we filtered out

all high-degree nodes in

the graph

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14 http://tinyurl.com/olabs-grades2013-2

Other issues and discussions

 Multiple Back-ends

 Multiple Data-source

– Loading different formats

– Declaring graphs from random relationship

– Defining and filtering sub-graphs

G-M

compiler

Giraph

Single in-memory

(Multi-threaded)

Fast execution for

small(-er) graph

GraphLab?

Grappa?

GraphX?

…

NFS

HDFS

Relational

DB

No SQL

“Let entities A becomes

node, and relation B

becomes edge.”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15 http://tinyurl.com/olabs-grades2013-2

Summary

 Using DSL for large-scale graph analysis

– Demonstrated possibility

– Promising productivity benefits

– Decent performance against manual implementation; being improved

 Future works

– Compiling into other backends

– System Integration: graph data acquisition and management

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16 http://tinyurl.com/olabs-grades2013-2

Acknowledgement

 We appreciate Sam Shah, Roshan Sumbaly, and Evion Kim at

LinkedIn for their valuable collaboration in this study.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17 http://tinyurl.com/olabs-grades2013-2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18 http://tinyurl.com/olabs-grades2013-2

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19 http://tinyurl.com/olabs-grades2013-2

Green-Marl Programs (Set A)

Pregel-

Canonical

Set

Pregel

Programs

Mechanical

transformation

(without re-writing)

Equivalent?

Pregel-Compatible Set (Set B)

There exists an equivalent

program re-writing

Automatic compiler

transformation (Set C) In theory, set

A == set B?

what is the

practical

boundary of

set B?

When

becomes set

C == set B?

