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ABSTRACT 

Graph abstraction is essential for many applications from 

finding a shortest path to executing complex machine learning 

(ML) algorithms like collaborative filtering. Graph construction 

from raw data for various applications is becoming challenging, 

due to exponential growth in data, as well as the need for large 

scale graph processing. Since graph construction is a data-

parallel problem, MapReduce is well-suited for this task. We 

developed GraphBuilder, a scalable framework for graph 

Extract-Transform-Load (ETL), to offload many of the 

complexities of graph construction, including graph formation, 

tabulation, transformation, partitioning, output formatting, and 

serialization. GraphBuilder is written in Java, for ease of 

programming, and it scales using the MapReduce model. In this 

paper, we describe the motivation for GraphBuilder, its 

architecture, MapReduce algorithms, and performance 

evaluation of the framework. Since large graphs should be 

partitioned over a cluster for storing and processing and 

partitioning methods have significant performance impacts, we 

develop several graph partitioning methods and evaluate their 

performance. We also open source the framework at 

https://01.org/graphbuilder/. 
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H.3.4 [Systems and Software]: Distributed systems and 
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General Terms 

Algorithms, Design, Measurement, Distributed System 
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1. INTRODUCTION 

Large graphs appear in a number of contexts, including 
internet connectivity models, complex scientific and 
engineering problems, social networks, and protein 
networks [6, 14]. Many combinatorial algorithms, such as 
graph coloring, shortest path, and clique analysis, as well as 
machine learning algorithms, such as Loopy Belief 
Propagation, Co-EM, and LASSO are used to perform 
sophisticated analysis on graph structured data [14]. 
Recently, various tools have emerged for graph analytics:  

 SNAP [11], PEGASUS [8]: to study basic graph 
characteristics  

 GraphLab [14], Pregel [15], Hama [20]:  runtime 
environment for massive graph computation  

 Stinger [19]: stream graph processing  

 Neo4j [17], Titan [23]: graph database  

In order for data scientists to use these frameworks, they 

must have tools to construct large graphs with arbitrary edge 

and vertex relationships and data structures. Unfortunately, 

tools do not exist today to efficiently and easily construct 

graphs with billions or trillions of vertex and edges from 

unstructured to structured data. While one may program 

MapReduce model, such as Apache Hadoop, to do this, the 

programmer must possess a deep understanding of not only 

their applications and the relevant analytics algorithms, but 

also know how to parallelize graph construction while using 

the resources efficiently. Moreover, modern graph datasets 

are huge and evolving so it is getting increasingly 

challenging to process using single commodity machine.  A 

standard solution is to partition a large graph over a cluster. 

Graph partition determines load balance and communication 

traffics among machines, and thus has significant 

performance impacts on graph processing. As a result of this 

burden, many data scientists spend most of their time 

preparing data using scripts or application-specific 

MapReduce programs, leaving little time for analysis.  

Motivated by the above challenges, we propose 

GraphBuilder, a scalable graph ETL framework. It provides 

a collection of algorithms for parallel graph construction, 

transformation, normalization, and partitioning. We describe 

its architecture and demonstrate its utility by constructing 

graphs for two distributed graph-based ML algorithms. In 

order to achieve good graph partitioning quality, we develop 

six partitioning methods in the framework and perform 

detailed analysis.   

Our contributions in this paper include: 

 Design of MapReduce algorithms for graph ETL 

including tabulation, transformation, normalization and 

partitioning. 

 Design and development of several graph partitioning 

algorithms and detailed analysis of partition quality.  

 Performance evaluation of GraphBuilder. 

 Open source of the framework. 

2. BACKGROUND AND MOTIVATION 

All graph analytic tools described in Section 1 assume a pre-
constructed graph that is ready for use. Unfortunately, 
graph-structured data is not always available for them. 
Graph needs to be created from exponentially growing raw 
data by extracting features relevant to the application. 
Current solutions are based on custom scripts, which are 
hard to maintain and extend, are only short-term solutions. 
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Since graphs are typically constructed from a large volume 
of raw data and resulted graphs also often have billions of 
edges and vertices, a parallel graph construction method is 
needed.  

To understand functionality required for a graph ETL 
framework, we study machine learning applications with the 
need of graphs and illustrated four typical examples in Table 1.  
We find that input graphs might need TFIDF calculation or 
application specific edge value calculation known as tabulation. 
Therefore, a graph ETL framework should be flexible enough to 
allow users to add user-specific tabulation methods and also 
provide many popular built-in tabulation methods like frequency 
count, TFIDF etc.  

Table 1: Graph-Based ML Applications Survey 

Application Algorithm Graph Edge Value 

Topic 
Modeling 

LDA Bipartite  TFIDF 

Ranking  PageRank Directed N/A 

Recommenda
tion System  

ALS Bipartite User Rating 

Medical 

Diagnosis  

Belief 

Propagation 
Bipartite Application 

Specific 

In addition, the constructed graphs often have billions of 
edges and vertices, and have a substantial amount of data 
associated with them. They must also be partitioned over a 
whole cluster for efficient graph store and graph processing. 
What is more, many graphs follow power-law degree 
distribution [6, 14], randomly partitioning vertices in a 
cluster for these graphs easily incurs load imbalance and 
significant communication traffics among machines [3, 13]. 
Therefore more intelligent partitioning methods should be 
provided by a Graph ETL framework to ensure balanced 
computation and minimum communication across clusters 
for power-law graphs.  

In this paper, we design and develop GraphBuilder, a 
scalable Graph ETL framework to address the varying 
requirements of graph applications, nature of graph and 
need to support different kinds of tabulation. To the best of 
our knowledge, GraphBuilder is the first open source large 
scale graph ETL framework. 

3. GRAPHBUILDER ARCHITECTURE 
Since MapReduce is well-suited for the algorithms used in 

large scale graph construction, we develop GraphBuilder 

using Hadoop MapReduce. The major components of 

GraphBuilder, and their relation to Hadoop are shown in 

Figure 1. It uses MapReduce to construct graphs and stores 

graphs in HDFS. GraphBuilder provides similar services to 

classic database Extract-Transform-Load (ETL) services for 

graph analytics.  

GraphBuilder ETL architecture is based on configurable 

Directed Acyclic Graph (DAG) MapReduce job model, 

which makes it easy to tailor the ETL pipeline for the 

individual graph construction tools. The complete ETL 

pipeline provides the following functions (for details, we 

refer to our  GraphBuilder white paper [26]): 

 Extract: feature extraction, graph formation and 

tabulation.  

 Transform: graph transformation, checks and 

normalization  

 Load: graph partitioning and serialization.  

The framework is designed to support different data parsers 

and tabulators, has flexibility and allows user to easily 

extend the framework such as user-specific vertex/edge 

value transformation. GraphBuilder provides a command 

line tool for easy use. Additionally, it exposes its interface at 

both job- and API-level for applications. 

 

Figure 1: Architecture Overview of GraphBuilder  

3.1 Graph Formation and Tabulation 
Users write application-specific parsers for their data source and 

short routines in Map function of a MapReduce job to extract 

and tokenize the features they are interested in analyzing. The 

output of Map task is a set of vertices and edges among vertices, 

connecting the members of one or more classes of features to 

one another using application specific rules. Edges are defined 

using a vertex adjacency list and vertices may be assigned 

arbitrary string names. Reduce tasks combines corresponding 

edge lists and vertices list from all map tasks to build a complete 

graph.  

As shown in Table 1, several tabulation methods are required for 

different machine learning applications to calculate edge values. 

In GraphBuilder, it supplies a set of built-in tabulation functions, 

such as TF (term frequency), TFIDF, WC (word count), ADD, 

MUL, and DIV, that may be used to tabulate both vertex values 

and edge values. Moreover, it also provides plug in interface on 

both source and destination vertex [26] to allow users to 

customize tabulation methods.  

3.2 Graph Transformation and Checking 
Graph mining and machine learning algorithms often require 

selective filtering of the input graph (e.g., directionality 

conversion) to present the input graph in a required format 

for computation. GraphBuilder supports a filter for 

directionality conversion, duplication, dangling, and self 

edge removal. We design them using MapReduce model in 

the following manner:   

Objective: Given a list of edges                             is 

a list of vertex IDs, obtain all unique edges         where 

        and achieve user specified graph transformation. 

Map: compute hash    over         and distribute edges to 
reduce tasks according to hash value.  

Reduce: since MapReduce framework generates 
                             for each reduce task, we can 
remove duplicate edges and also apply different optional 
functions to edge lists like removing self or bi-directional 
edges, directionality conversion etc.  

 Hadoop/HDFS 

 Hadoop/MR  
Distributed  

Graph 

 Extract  Transform  Load 

 
Built-in Parser/Tabulator 

 
Custom Parser/Tabulator 



 

 

3.3 Graph Normalization 
Vertex IDs generated from raw data often have arbitrarily 

long sparse labels (e.g., URLs). The sparse nature of labels 

causes high utilization of memory and storage. 

GraphBuilder addresses this problem by normalizing raw 

vertex IDs to integers. It does normalization in two phases 

described below. Phase 1 builds a dictionary to map raw IDs 

to integers and chunks it into smaller segments for efficient 

load in phase 2. After phase 1, phase 2 first sorts edge lists 

based on raw source vertex IDs and then reads dictionary 

segments to normalize source vertex IDs. Similarly, 

GraphBuilder applies the same method to normalize target  

vertex IDs.   

Phase 1 (Dictionary creation and chunk)  

Objective: Given a list of   raw vertex IDs                , 
creates a one-to-one mapping dictionary to   =        
           is a list of integers and breaks the dictionary 

into smaller chunks by hashing raw IDs. 

Input: A list of raw IDs:            , where       

Output: A chunked dictionary:        where        

Initialization: Configure each map task to process a fixed 

number ( ) of key value pairs.  

Map (  ): Let    be the     raw IDs processed by this map 

task, emit key-value pair       . 

Reduce                    : calculate corresponding new 

integers according to                 and emit pairs 

           where            

Then we apply a new MapReduce job to chunk dictionary 

into smaller segments by applying the following hash 

function in MapReduce shuffling phase:  

                          

Phase 2 (Normalization) 

Objective: Given a list of edges                          

and a dictionary       , normalize each pair         

into              . 

Input: A list of edges:          , and a dictionary        

Output: A list of edges:               

Initialization: We apply a MapReduce job to sort edge lists 

according to raw IDs. Then apply the following new 

MapReduce job to do normalization:  

Map        : Read sorted source ids in the edge lists and Load 

corresponding dictionary segment                       , 

find normalized integers then emit a new pair           . 

Reduce                       : Similar to map function, load 

dictionary segment                     , and then emit 

key-value pairs                                  . 

3.4 Graph Partitioning  

Large scale graph processing requires efficient partitioning 
of the graph to minimize communication across machines 
while maintaining the load balance. Unfortunately, most large-
scale graph processing tools such as Pregel, HAMA, Trinity [21] 
and Kineograph [5], have not yet explored graph partitioning 
methods carefully, and resort to simple graph partitioning by 
using random assignment of vertices or edges. These methods 

are simple, and result in close-to-balanced partitions. 
However, these methods lead to much higher 
communication overheads than sophisticated partitioning 
algorithms. Gonzalez et al. [6] shows that a sophisticated 
partitioning method could achieve ~60% graph processing 
performance speedup over the random method.   

Graph partitioning has been studied for decades, and is an 
NP-hard problem with many applications in different 
domains. Numerous solutions have been proposed. Broadly, 
they are categorized into two groups: 1) offline graph 
partitioning [9] and 2) online (streaming) graph partitioning 
[22, 24]. A common approach of offline methods is to 
construct a balanced k-way cut in which subgraphs are 
balanced over machines and communication between 
machines is minimized. Offline methods, such as spectral 
clustering [18], METIS [16], k-partitioning [10] collect full 
graph information to perform offline partitioning and 
achieve good cut, but fail to scale to large scale graphs due 
to high computation and memory costs [1]. These 
algorithms perform poorly on power-law graphs and are 
difficult to parallelize due to frequent coordination of global 
graph information [1]. Online partitioning methods are 
proposed to address these challenges [22, 24]. These 
algorithms assign edges and vertices based on the 
information they have. Their goal is to find a close-to-optimal 
balanced partitioning with minimum memory usage and 
computational overhead.  

Given the complexity of offline partitioning, limited 
parallelism and the evolving nature of graphs, we decided to 
support online graph partitioning in GraphBuilder. Online 
algorithm supports either edge or vertex cut, where edges or 
vertices may span multiple machines, respectively. 
Percolation theory suggests that power-law graphs have 
good vertex-cuts [2], and research has shown  that any edge 
cut can directly construct a vertex cut which requires strictly 
less communications and storage [6]. Given the advantages 
of the vertex cut approach for power-law graphs we decided 
to analyze its multiple partitioning heuristics.   

We denote a graph to be        , where   is a set of vertices 

and   is a set of edges. In vertex-cut methods, each edge   is 

assigned to a machine       where                 and   is 

the number graph partitions (shards).  With vertex cut, each 

vertex   spans a set of machines     , where                  
containing its adjacent edges.  Similar to power graph [6], we 

define the partitioning objective as follows:  

    
 

   
                                   (1) 

             s.t.                       
   

 
     (2) 

Where   (   ) is a load balance factor.        represents the 
number of copies (replication) of vertex   in the cluster (a.k.a 
replication factor). The first equation minimizes the replication 
factor to reduce the communication cost, and the second 
equation ensures the load balance with a small relaxation factor 
 . With the above partitioning objective, we design  and analyze 
six partitioning methods as follows 

Random Vertex-cuts (A1):  It is the simplest method, and 
randomly assigns edges to the machines. This approach has little 
computational overhead and achieves good balance, but it has a 
high replication factor.  

Greedy Vertex-cuts (A2): improves the random algorithm by 
introducing heuristics to edge assignments. We aim at 
minimizing the replication factor of vertices by using the 
following heuristic to assign a new edge        :  



 

 

 Heuristic 1: if            , select a machine 

             to assign the edge        to.  The 

current load      is increased by 1. 

 Heuristic 2:  if                      and       
 , select a machine                            

to assign the edge         to. Then increase      by 1 and 

add   to      if   is not in      and      if   is not in 

    .   
 Heuristic 3:  if       ,         or       , 

      , select a machine         or         to 

assign the edge         to. Then increase      by 1 and add 

  to      and     . 
 Heuristic 4: if            , select a machine 

                           to assign the edge 

       to. Then increase      by 1 and add   to      and 

       
This method uses a history of the edge assignments to take the 

next decision. Our MapReduce implementation runs this 

heuristic in reduce tasks independently without task 

coordination and achieves good partitioning performance.   

The above two methods don’t constrain the assignment of vertex 
and can potentially assign a vertex to any machine in the cluster. 
By allowing a vertex   to be only replicated over a small subset 
of machines or shards (denoted as   ,     , where   is the 
complete set of shards), we are able to control the upper bound 
of the replication factor. By limiting the upper bound of 
replication factors, constrained-based approaches can potentially 
have lower replication factors than random and greedy 
approaches.  

In order to successfully assign an edge        , constrained sets 
   and    corresponding to   and   should overlap. In order to get 

good constrained sets, we formulate the requirements of 
constrained sets below:  

                                        

          

The above formulation requires that:  

1. Constrained sets intersect with  
2. No constrained set is a superset of another constrained set 
3. All constrained set has the same size  

The biggest challenge for this approach is how to find these 
constrained sets. We illustrate the following approaches: 

Grid-based Constrained Random Vertex-cuts (A3): Vertex   
is mapped into a shard   in shard-grid   by using a simple 
hash function. Then,    is generated by selecting an arbitrary 
column and row in shard  . Following this construction, no 
matter which column and row we choose, constrained sets 
are ensured to have at least two intersected shards with any 
other constrained set. 

For example, Figure 2 shows a 3x3 grid. If a vertex   is 
mapped to shard 5 according to a hash function, then its 
corresponding constrained set is               . If a vertex 
  is mapped to shard 9, then its corresponding constrained 
set is               . Given a new edge        , it will be 
assigned to one of intersected shards 6 and 8.  In this 
method, we randomly select one shard for edge assignment. 
The upper bound of replication factor obtained with this 

approach is      , where   is the number of shards in the 
cluster.   

 
Figure 2 Grid based constrained solution 

Grid-based Constrained Greedy Vertex-cuts (A4): Similar to 
the above approach except we use a greedy vertex assignment 
for shard selection.  

Torus-based Constrained Random Vertex cuts (A5): To 
further reduce the upper-bound of the replication factor we used 
2D torus topology as shown in Figure 3, each constrained set is 

generated by all shards in the same column and 
 

 
   shards in 

the same raw,   is the number of shards in each row. For 
example, if a vertex   is mapped to shard 25, then its 
corresponding constrained set is 
                           . If a vertex   is mapped to 
shard 8, then its corresponding constrained set is    
                    . Given an edge        , it will be 
assigned to one of intersected shard 1. The torus-based approach 
ensures that constrained sets intersect with other constrained sets 
at least one shard.  If there are more than one intersected shards, 
we randomly select one for edge assignment. The upper bound 

of replication factor is        .  
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Figure 3 Torus based constrained solution 

Torus-based Constrained Greedy Vertex-cuts (A6): Similar 
to the above method, but applied greedy heuristic to select a 
shard from the intersected shards. 

4. EVALUATION 
We evaluated our GraphBuilder framework using full Wikipedia 

dataset [25], by constructing page-link graph and bipartite word-

page graph, on an Intel® Xeon® E5 cluster. Each node had dual 

sockets with 8 cores each, 64GB memory, 4x1TB SATA HDDs, 

and an Intel® 10G Ethernet and switch. Page-link and word-

page graphs are constructed for PageRank and topic modeling 

analysis, respectively.  

We constructed the above graphs on 8 nodes and 16 nodes 

clusters and presented results in Figure  and 5. Our results show 

that extract phase is most time-consuming. Our analysis reveals 

that the performance is dominated by parsing XML files, which 

is user-specific. Partitioning phase also takes a large portion of 

time and normalization phase has various overheads, up to 

applications. Since topic modeling requires TFIDF edge weight, 

tabulation is included in Figure 5. Moreover, our results reveal 

that construction time scales linearly up to 16 nodes, and drops 

by almost half as we increase the cluster size from 8 to 16 nodes.  

Given the high parallelism in different phases, we believe that 

our framework can scale to larger clusters.   



 

 

 

Figure 6: Replication factor scaling of real-world graph

 

Figure 4: Page-Link Graph Construction Time 

 

Figure 5: Word-Page Graph Construction Time 

In addition to graph construction time, we also evaluated 

partitioning algorithms by studying their replication factor 

(Equation 1 in section 3.4) and load balance (Equation 2 in 

section 3.4) using four real-world graphs shown in Table 2. 

Besides page-link and word-page graphs, we added two pre-

constructed graphs from SNAP datasets [11]. Detailed graph 

statistics are shown in Table 2.   

Table 2: Statistics for the Real-World Graphs 

Graph |V| |E| Power law factor 

Page-Link 20M 128M 2.41 

Word-Page 55M 1.4B 2.23 

Citation Network 3.7M 16M 1.66 

Live Journal 4M 34.6M 2.1 

We studied replication factors of graph partitioning methods 

along the number of partitions and present results in Figure 6. 

Figure  reveals that constrained-based methods scale 

significantly better than greedy and random methods with the 

number of partitions for all four graphs; our results shows 30% 

reduction in replication even with 8 partitions. That is because 

constrained-based methods have theoretical upper bound of 

replication factors (see in subsection 3.4). In addition to 

replication factor, we also captured load balance factors with 

different number of partitions and observed that constrained-

based random methods result in imbalanced partitions whereas 

other approaches achieve the same load balance as perfect 

random. A result of load balance factor across 16 partitions is 

shown in Figure 7. 

 

Figure 7: Graph Partition Load Balance 

Partitioning has direct effect on the performance of distributed 

graph processing. We performed Wikipedia topic modeling over 

the word-page graph using GraphLab’s topic modeling (LDA) 

toolkit. We measure the time of loading partitioned graphs into 

GraphLab and total computation time of the LDA algorithm on a 

16 nodes cluster. We only used partitioned graph generated by 

random (A1), greedy (A2), and {grid, torus} constrained-greedy 

(A4, A6) algorithms because A3 and A5 results in significant 

load imbalance and are excluded for comparison We present 

results in Figure 8 and observe that partitioning methods have 

large performance impacts and A6 with least replication 

achieves best execution time.  

Based on our above analysis of replication factor, load balance, 

and graph processing performance, we concluded A6 and A4 

algorithms yield the best result and are two promising graph 

partitioning methods.  

 

Figure 8: GraphLab Topic Modeling Toolkit Execution 

Time with Various Partitioning Algorithms 



 

 

5. CONCLUSION 
In this paper, we presented GraphBuilder, a framework that 

provides scalable services for large-scale graph ETL. We 

conducted extensive evaluations in our cluster to understand 

the framework’s performance. We analyzed several graph 

partitioning algorithms and evaluated their partitioning 

quality and impact on runtime performance. We find that 

two constrained based greedy methods (A4, A6) outperform 

other methods for partitioning. We also open sourced 

GraphBuilder at www.01.org/graphbuilder.  

In the future, we plan to extend our framework along the 

following avenues: 1) study scalability of our framework 

over a larger cluster; 2) investigate additional graph 

partitioning algorithms; 3) extend our framework to support 

stream-based graph construction.  
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