

GraphBuilder: Scalable Graph ETL Framework
Nilesh Jain

Systems Architecture Lab
Intel Corporation

Hillsboro, OR 97124

nilesh.jain@intel.com

Guangdeng Liao
Systems Architecture Lab

Intel Corporation
Hillsboro, OR 97124

guangdeng.liao@intel.com

Theodore L. Willke
Systems Architecture Lab

Intel Corporation
Hillsboro, OR 97124

theodore.l.willke@intel.com

ABSTRACT

Graph abstraction is essential for many applications from

finding a shortest path to executing complex machine learning

(ML) algorithms like collaborative filtering. Graph construction

from raw data for various applications is becoming challenging,

due to exponential growth in data, as well as the need for large

scale graph processing. Since graph construction is a data-

parallel problem, MapReduce is well-suited for this task. We

developed GraphBuilder, a scalable framework for graph

Extract-Transform-Load (ETL), to offload many of the

complexities of graph construction, including graph formation,

tabulation, transformation, partitioning, output formatting, and

serialization. GraphBuilder is written in Java, for ease of

programming, and it scales using the MapReduce model. In this

paper, we describe the motivation for GraphBuilder, its

architecture, MapReduce algorithms, and performance

evaluation of the framework. Since large graphs should be

partitioned over a cluster for storing and processing and

partitioning methods have significant performance impacts, we

develop several graph partitioning methods and evaluate their

performance. We also open source the framework at

https://01.org/graphbuilder/.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Distributed systems and

Performance evaluation

General Terms

Algorithms, Design, Measurement, Distributed System

Keywords

GraphBuilder, Graph Construction, Graph Analytics, Graph

Partitioning, Graph ETL, MapReduce, Hadoop

1. INTRODUCTION

Large graphs appear in a number of contexts, including
internet connectivity models, complex scientific and
engineering problems, social networks, and protein
networks [6, 14]. Many combinatorial algorithms, such as
graph coloring, shortest path, and clique analysis, as well as
machine learning algorithms, such as Loopy Belief
Propagation, Co-EM, and LASSO are used to perform
sophisticated analysis on graph structured data [14].
Recently, various tools have emerged for graph analytics:

 SNAP [11], PEGASUS [8]: to study basic graph
characteristics

 GraphLab [14], Pregel [15], Hama [20]: runtime
environment for massive graph computation

 Stinger [19]: stream graph processing

 Neo4j [17], Titan [23]: graph database

In order for data scientists to use these frameworks, they

must have tools to construct large graphs with arbitrary edge

and vertex relationships and data structures. Unfortunately,

tools do not exist today to efficiently and easily construct

graphs with billions or trillions of vertex and edges from

unstructured to structured data. While one may program

MapReduce model, such as Apache Hadoop, to do this, the

programmer must possess a deep understanding of not only

their applications and the relevant analytics algorithms, but

also know how to parallelize graph construction while using

the resources efficiently. Moreover, modern graph datasets

are huge and evolving so it is getting increasingly

challenging to process using single commodity machine. A

standard solution is to partition a large graph over a cluster.

Graph partition determines load balance and communication

traffics among machines, and thus has significant

performance impacts on graph processing. As a result of this

burden, many data scientists spend most of their time

preparing data using scripts or application-specific

MapReduce programs, leaving little time for analysis.

Motivated by the above challenges, we propose

GraphBuilder, a scalable graph ETL framework. It provides

a collection of algorithms for parallel graph construction,

transformation, normalization, and partitioning. We describe

its architecture and demonstrate its utility by constructing

graphs for two distributed graph-based ML algorithms. In

order to achieve good graph partitioning quality, we develop

six partitioning methods in the framework and perform

detailed analysis.

Our contributions in this paper include:

 Design of MapReduce algorithms for graph ETL

including tabulation, transformation, normalization and

partitioning.

 Design and development of several graph partitioning

algorithms and detailed analysis of partition quality.

 Performance evaluation of GraphBuilder.

 Open source of the framework.

2. BACKGROUND AND MOTIVATION

All graph analytic tools described in Section 1 assume a pre-
constructed graph that is ready for use. Unfortunately,
graph-structured data is not always available for them.
Graph needs to be created from exponentially growing raw
data by extracting features relevant to the application.
Current solutions are based on custom scripts, which are
hard to maintain and extend, are only short-term solutions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GRADES – SIGMOD/PODS’13, Month 6, 2013, New York, NY, USA.
Copyright 2013 ACM 1-58113-000-0/00/0010 …$15.00.

https://01.org/graphbuilder/

Since graphs are typically constructed from a large volume
of raw data and resulted graphs also often have billions of
edges and vertices, a parallel graph construction method is
needed.

To understand functionality required for a graph ETL
framework, we study machine learning applications with the
need of graphs and illustrated four typical examples in Table 1.
We find that input graphs might need TFIDF calculation or
application specific edge value calculation known as tabulation.
Therefore, a graph ETL framework should be flexible enough to
allow users to add user-specific tabulation methods and also
provide many popular built-in tabulation methods like frequency
count, TFIDF etc.

Table 1: Graph-Based ML Applications Survey

Application Algorithm Graph Edge Value

Topic
Modeling

LDA Bipartite TFIDF

Ranking PageRank Directed N/A

Recommenda
tion System

ALS Bipartite User Rating

Medical

Diagnosis

Belief

Propagation
Bipartite Application

Specific

In addition, the constructed graphs often have billions of
edges and vertices, and have a substantial amount of data
associated with them. They must also be partitioned over a
whole cluster for efficient graph store and graph processing.
What is more, many graphs follow power-law degree
distribution [6, 14], randomly partitioning vertices in a
cluster for these graphs easily incurs load imbalance and
significant communication traffics among machines [3, 13].
Therefore more intelligent partitioning methods should be
provided by a Graph ETL framework to ensure balanced
computation and minimum communication across clusters
for power-law graphs.

In this paper, we design and develop GraphBuilder, a
scalable Graph ETL framework to address the varying
requirements of graph applications, nature of graph and
need to support different kinds of tabulation. To the best of
our knowledge, GraphBuilder is the first open source large
scale graph ETL framework.

3. GRAPHBUILDER ARCHITECTURE
Since MapReduce is well-suited for the algorithms used in

large scale graph construction, we develop GraphBuilder

using Hadoop MapReduce. The major components of

GraphBuilder, and their relation to Hadoop are shown in

Figure 1. It uses MapReduce to construct graphs and stores

graphs in HDFS. GraphBuilder provides similar services to

classic database Extract-Transform-Load (ETL) services for

graph analytics.

GraphBuilder ETL architecture is based on configurable

Directed Acyclic Graph (DAG) MapReduce job model,

which makes it easy to tailor the ETL pipeline for the

individual graph construction tools. The complete ETL

pipeline provides the following functions (for details, we

refer to our GraphBuilder white paper [26]):

 Extract: feature extraction, graph formation and

tabulation.

 Transform: graph transformation, checks and

normalization

 Load: graph partitioning and serialization.

The framework is designed to support different data parsers

and tabulators, has flexibility and allows user to easily

extend the framework such as user-specific vertex/edge

value transformation. GraphBuilder provides a command

line tool for easy use. Additionally, it exposes its interface at

both job- and API-level for applications.

Figure 1: Architecture Overview of GraphBuilder

3.1 Graph Formation and Tabulation
Users write application-specific parsers for their data source and

short routines in Map function of a MapReduce job to extract

and tokenize the features they are interested in analyzing. The

output of Map task is a set of vertices and edges among vertices,

connecting the members of one or more classes of features to

one another using application specific rules. Edges are defined

using a vertex adjacency list and vertices may be assigned

arbitrary string names. Reduce tasks combines corresponding

edge lists and vertices list from all map tasks to build a complete

graph.

As shown in Table 1, several tabulation methods are required for

different machine learning applications to calculate edge values.

In GraphBuilder, it supplies a set of built-in tabulation functions,

such as TF (term frequency), TFIDF, WC (word count), ADD,

MUL, and DIV, that may be used to tabulate both vertex values

and edge values. Moreover, it also provides plug in interface on

both source and destination vertex [26] to allow users to

customize tabulation methods.

3.2 Graph Transformation and Checking
Graph mining and machine learning algorithms often require

selective filtering of the input graph (e.g., directionality

conversion) to present the input graph in a required format

for computation. GraphBuilder supports a filter for

directionality conversion, duplication, dangling, and self

edge removal. We design them using MapReduce model in

the following manner:

Objective: Given a list of edges is

a list of vertex IDs, obtain all unique edges where

 and achieve user specified graph transformation.

Map: compute hash over and distribute edges to
reduce tasks according to hash value.

Reduce: since MapReduce framework generates
 for each reduce task, we can
remove duplicate edges and also apply different optional
functions to edge lists like removing self or bi-directional
edges, directionality conversion etc.

 Hadoop/HDFS

 Hadoop/MR
Distributed

Graph

 Extract Transform Load

Built-in Parser/Tabulator

Custom Parser/Tabulator

3.3 Graph Normalization
Vertex IDs generated from raw data often have arbitrarily

long sparse labels (e.g., URLs). The sparse nature of labels

causes high utilization of memory and storage.

GraphBuilder addresses this problem by normalizing raw

vertex IDs to integers. It does normalization in two phases

described below. Phase 1 builds a dictionary to map raw IDs

to integers and chunks it into smaller segments for efficient

load in phase 2. After phase 1, phase 2 first sorts edge lists

based on raw source vertex IDs and then reads dictionary

segments to normalize source vertex IDs. Similarly,

GraphBuilder applies the same method to normalize target

vertex IDs.

Phase 1 (Dictionary creation and chunk)

Objective: Given a list of raw vertex IDs ,
creates a one-to-one mapping dictionary to =
 is a list of integers and breaks the dictionary

into smaller chunks by hashing raw IDs.

Input: A list of raw IDs: , where

Output: A chunked dictionary: where

Initialization: Configure each map task to process a fixed

number () of key value pairs.

Map (): Let be the raw IDs processed by this map

task, emit key-value pair .

Reduce : calculate corresponding new

integers according to and emit pairs

 where

Then we apply a new MapReduce job to chunk dictionary

into smaller segments by applying the following hash

function in MapReduce shuffling phase:

Phase 2 (Normalization)

Objective: Given a list of edges

and a dictionary , normalize each pair

into .

Input: A list of edges: , and a dictionary

Output: A list of edges:

Initialization: We apply a MapReduce job to sort edge lists

according to raw IDs. Then apply the following new

MapReduce job to do normalization:

Map : Read sorted source ids in the edge lists and Load

corresponding dictionary segment ,

find normalized integers then emit a new pair .

Reduce : Similar to map function, load

dictionary segment , and then emit

key-value pairs .

3.4 Graph Partitioning

Large scale graph processing requires efficient partitioning
of the graph to minimize communication across machines
while maintaining the load balance. Unfortunately, most large-
scale graph processing tools such as Pregel, HAMA, Trinity [21]
and Kineograph [5], have not yet explored graph partitioning
methods carefully, and resort to simple graph partitioning by
using random assignment of vertices or edges. These methods

are simple, and result in close-to-balanced partitions.
However, these methods lead to much higher
communication overheads than sophisticated partitioning
algorithms. Gonzalez et al. [6] shows that a sophisticated
partitioning method could achieve ~60% graph processing
performance speedup over the random method.

Graph partitioning has been studied for decades, and is an
NP-hard problem with many applications in different
domains. Numerous solutions have been proposed. Broadly,
they are categorized into two groups: 1) offline graph
partitioning [9] and 2) online (streaming) graph partitioning
[22, 24]. A common approach of offline methods is to
construct a balanced k-way cut in which subgraphs are
balanced over machines and communication between
machines is minimized. Offline methods, such as spectral
clustering [18], METIS [16], k-partitioning [10] collect full
graph information to perform offline partitioning and
achieve good cut, but fail to scale to large scale graphs due
to high computation and memory costs [1]. These
algorithms perform poorly on power-law graphs and are
difficult to parallelize due to frequent coordination of global
graph information [1]. Online partitioning methods are
proposed to address these challenges [22, 24]. These
algorithms assign edges and vertices based on the
information they have. Their goal is to find a close-to-optimal
balanced partitioning with minimum memory usage and
computational overhead.

Given the complexity of offline partitioning, limited
parallelism and the evolving nature of graphs, we decided to
support online graph partitioning in GraphBuilder. Online
algorithm supports either edge or vertex cut, where edges or
vertices may span multiple machines, respectively.
Percolation theory suggests that power-law graphs have
good vertex-cuts [2], and research has shown that any edge
cut can directly construct a vertex cut which requires strictly
less communications and storage [6]. Given the advantages
of the vertex cut approach for power-law graphs we decided
to analyze its multiple partitioning heuristics.

We denote a graph to be , where is a set of vertices

and is a set of edges. In vertex-cut methods, each edge is

assigned to a machine where and is

the number graph partitions (shards). With vertex cut, each

vertex spans a set of machines , where
containing its adjacent edges. Similar to power graph [6], we

define the partitioning objective as follows:

 (1)

 s.t.

 (2)

Where () is a load balance factor. represents the
number of copies (replication) of vertex in the cluster (a.k.a
replication factor). The first equation minimizes the replication
factor to reduce the communication cost, and the second
equation ensures the load balance with a small relaxation factor
 . With the above partitioning objective, we design and analyze
six partitioning methods as follows

Random Vertex-cuts (A1): It is the simplest method, and
randomly assigns edges to the machines. This approach has little
computational overhead and achieves good balance, but it has a
high replication factor.

Greedy Vertex-cuts (A2): improves the random algorithm by
introducing heuristics to edge assignments. We aim at
minimizing the replication factor of vertices by using the
following heuristic to assign a new edge :

 Heuristic 1: if , select a machine

 to assign the edge to. The

current load is increased by 1.

 Heuristic 2: if and
 , select a machine

to assign the edge to. Then increase by 1 and

add to if is not in and if is not in

 .
 Heuristic 3: if , or ,

 , select a machine or to

assign the edge to. Then increase by 1 and add

 to and .
 Heuristic 4: if , select a machine

 to assign the edge

 to. Then increase by 1 and add to and

This method uses a history of the edge assignments to take the

next decision. Our MapReduce implementation runs this

heuristic in reduce tasks independently without task

coordination and achieves good partitioning performance.

The above two methods don’t constrain the assignment of vertex
and can potentially assign a vertex to any machine in the cluster.
By allowing a vertex to be only replicated over a small subset
of machines or shards (denoted as , , where is the
complete set of shards), we are able to control the upper bound
of the replication factor. By limiting the upper bound of
replication factors, constrained-based approaches can potentially
have lower replication factors than random and greedy
approaches.

In order to successfully assign an edge , constrained sets
 and corresponding to and should overlap. In order to get

good constrained sets, we formulate the requirements of
constrained sets below:

The above formulation requires that:

1. Constrained sets intersect with
2. No constrained set is a superset of another constrained set
3. All constrained set has the same size

The biggest challenge for this approach is how to find these
constrained sets. We illustrate the following approaches:

Grid-based Constrained Random Vertex-cuts (A3): Vertex
is mapped into a shard in shard-grid by using a simple
hash function. Then, is generated by selecting an arbitrary
column and row in shard . Following this construction, no
matter which column and row we choose, constrained sets
are ensured to have at least two intersected shards with any
other constrained set.

For example, Figure 2 shows a 3x3 grid. If a vertex is
mapped to shard 5 according to a hash function, then its
corresponding constrained set is . If a vertex
 is mapped to shard 9, then its corresponding constrained
set is . Given a new edge , it will be
assigned to one of intersected shards 6 and 8. In this
method, we randomly select one shard for edge assignment.
The upper bound of replication factor obtained with this

approach is , where is the number of shards in the
cluster.

Figure 2 Grid based constrained solution

Grid-based Constrained Greedy Vertex-cuts (A4): Similar to
the above approach except we use a greedy vertex assignment
for shard selection.

Torus-based Constrained Random Vertex cuts (A5): To
further reduce the upper-bound of the replication factor we used
2D torus topology as shown in Figure 3, each constrained set is

generated by all shards in the same column and

 shards in

the same raw, is the number of shards in each row. For
example, if a vertex is mapped to shard 25, then its
corresponding constrained set is
 . If a vertex is mapped to
shard 8, then its corresponding constrained set is
 . Given an edge , it will be
assigned to one of intersected shard 1. The torus-based approach
ensures that constrained sets intersect with other constrained sets
at least one shard. If there are more than one intersected shards,
we randomly select one for edge assignment. The upper bound

of replication factor is .

1 52

9 10

3

11

4

12

17

25

18 19 20

26 27 28

6

13 14

7

15

8

16

21

29

22 23 24

30 31 32

Figure 3 Torus based constrained solution

Torus-based Constrained Greedy Vertex-cuts (A6): Similar
to the above method, but applied greedy heuristic to select a
shard from the intersected shards.

4. EVALUATION
We evaluated our GraphBuilder framework using full Wikipedia

dataset [25], by constructing page-link graph and bipartite word-

page graph, on an Intel® Xeon® E5 cluster. Each node had dual

sockets with 8 cores each, 64GB memory, 4x1TB SATA HDDs,

and an Intel® 10G Ethernet and switch. Page-link and word-

page graphs are constructed for PageRank and topic modeling

analysis, respectively.

We constructed the above graphs on 8 nodes and 16 nodes

clusters and presented results in Figure and 5. Our results show

that extract phase is most time-consuming. Our analysis reveals

that the performance is dominated by parsing XML files, which

is user-specific. Partitioning phase also takes a large portion of

time and normalization phase has various overheads, up to

applications. Since topic modeling requires TFIDF edge weight,

tabulation is included in Figure 5. Moreover, our results reveal

that construction time scales linearly up to 16 nodes, and drops

by almost half as we increase the cluster size from 8 to 16 nodes.

Given the high parallelism in different phases, we believe that

our framework can scale to larger clusters.

Figure 6: Replication factor scaling of real-world graph

Figure 4: Page-Link Graph Construction Time

Figure 5: Word-Page Graph Construction Time

In addition to graph construction time, we also evaluated

partitioning algorithms by studying their replication factor

(Equation 1 in section 3.4) and load balance (Equation 2 in

section 3.4) using four real-world graphs shown in Table 2.

Besides page-link and word-page graphs, we added two pre-

constructed graphs from SNAP datasets [11]. Detailed graph

statistics are shown in Table 2.

Table 2: Statistics for the Real-World Graphs

Graph |V| |E| Power law factor

Page-Link 20M 128M 2.41

Word-Page 55M 1.4B 2.23

Citation Network 3.7M 16M 1.66

Live Journal 4M 34.6M 2.1

We studied replication factors of graph partitioning methods

along the number of partitions and present results in Figure 6.

Figure reveals that constrained-based methods scale

significantly better than greedy and random methods with the

number of partitions for all four graphs; our results shows 30%

reduction in replication even with 8 partitions. That is because

constrained-based methods have theoretical upper bound of

replication factors (see in subsection 3.4). In addition to

replication factor, we also captured load balance factors with

different number of partitions and observed that constrained-

based random methods result in imbalanced partitions whereas

other approaches achieve the same load balance as perfect

random. A result of load balance factor across 16 partitions is

shown in Figure 7.

Figure 7: Graph Partition Load Balance

Partitioning has direct effect on the performance of distributed

graph processing. We performed Wikipedia topic modeling over

the word-page graph using GraphLab’s topic modeling (LDA)

toolkit. We measure the time of loading partitioned graphs into

GraphLab and total computation time of the LDA algorithm on a

16 nodes cluster. We only used partitioned graph generated by

random (A1), greedy (A2), and {grid, torus} constrained-greedy

(A4, A6) algorithms because A3 and A5 results in significant

load imbalance and are excluded for comparison We present

results in Figure 8 and observe that partitioning methods have

large performance impacts and A6 with least replication

achieves best execution time.

Based on our above analysis of replication factor, load balance,

and graph processing performance, we concluded A6 and A4

algorithms yield the best result and are two promising graph

partitioning methods.

Figure 8: GraphLab Topic Modeling Toolkit Execution

Time with Various Partitioning Algorithms

5. CONCLUSION
In this paper, we presented GraphBuilder, a framework that

provides scalable services for large-scale graph ETL. We

conducted extensive evaluations in our cluster to understand

the framework’s performance. We analyzed several graph

partitioning algorithms and evaluated their partitioning

quality and impact on runtime performance. We find that

two constrained based greedy methods (A4, A6) outperform

other methods for partitioning. We also open sourced

GraphBuilder at www.01.org/graphbuilder.

In the future, we plan to extend our framework along the

following avenues: 1) study scalability of our framework

over a larger cluster; 2) investigate additional graph

partitioning algorithms; 3) extend our framework to support

stream-based graph construction.

6. ACKNOWLEDGMENTS

GraphBuilder was inspired by our collaboration with Carlos
Guestrin (UW) and his extended team, namely Haijie Gu,
Joseph E. Gonzalez, Yucheng Low, and Danny Bickson
through Intel Science and Technology Center. We would like
to thank Xia Zhu, Kushal Datta for helping us with
GraphBuilder implementation, and other team members for
valuable inputs.

7. REFERENCES
1. Abou-Rjeili, A. and G. Karypis. Multilevel

algorithms for partitioning power-law graphs. in

Parallel and Distributed Processing Symposium,

2006. IPDPS 2006. 20th International. 2006.

2. ALBERT, R., H. JEONG, and A.L. BARABSI.

Error and attack tolerance of complex networks.

2000. In Nature.

3. Andreev, K., et al., Balanced graph partitioning, in

Proceedings of the sixteenth annual ACM

symposium on Parallelism in algorithms and

architectures2004, ACM: Barcelona, Spain. p. 120-

124.

4. Chakrabarti, D., Y. Zhan, and C. Faloutsos. R-

MAT: A Recursive Model for Graph Mining. 2004.

5. Cheng, R., et al., Kineograph: taking the pulse of a

fast-changing and connected world, in Proceedings

of the 7th ACM european conference on Computer

Systems2012, ACM: Bern, Switzerland. p. 85-98.

6. Gonzalez, J.E., et al., PowerGraph: distributed

graph-parallel computation on natural graphs, in

Proceedings of the 10th USENIX conference on

Operating Systems Design and

Implementation2012, USENIX Association:

Hollywood, CA, USA. p. 17-30.

7. Gremlin.

https://github.com/tinkerpop/gremlin/wiki. 2012.

8. Kang, U., C.E. Tsourakakis, and C. Faloutsos.

PEGASUS: A Peta-Scale Graph Mining System

Implementation and Observations. in Data Mining,

2009. ICDM '09. Ninth IEEE International

Conference on. 2009.

9. Karypis, G. and V. Kumar, Parallel multilevel k-

way partitioning scheme for irregular graphs, in

Proceedings of the 1996 ACM/IEEE conference on

Supercomputing (CDROM)1996, IEEE Computer

Society: Pittsburgh, Pennsylvania, USA. p. 35.

10. L, T.k., et al., New spectral bounds on k-

partitioning of graphs, in Proceedings of the

thirteenth annual ACM symposium on Parallel

algorithms and architectures2001, ACM: Crete

Island, Greece. p. 255-262.

11. Leskovec, J. SNAP Library at

http://snap.stanford.edu/snap/index.html 2008.

12. Leskovec, J., et al., Kronecker Graphs: An

Approach to Modeling Networks. J. Mach. Learn.

Res., 2010. 11: p. 985-1042.

13. Leskovec, J., et al., Statistical properties of

community structure in large social and

information networks, in Proceedings of the 17th

international conference on World Wide Web2008,

ACM: Beijing, China. p. 695-704.

14. Low, Y., et al., Distributed GraphLab: a

framework for machine learning and data mining

in the cloud. Proc. VLDB Endow., 2012. 5(8): p.

716-727.

15. Malewicz, G., et al., Pregel: a system for large-

scale graph processing, in Proceedings of the 2010

ACM SIGMOD International Conference on

Management of data2010, ACM: Indianapolis,

Indiana, USA. p. 135-146.

16. Metis. http://glaros.dtc.umn.edu/gkhome/views/metis/

2012.

17. Neo4j. Neo4j graph database at http://neo4j.org.

18. Ng, A.Y., M.I. Jordan, and Y. Weiss. On spectral

clustering: Analysis and an algorithm. 2002.

Advances in neural information processing

systems.

19. Riedy, J. and D.A. Bader, Massive streaming data

analytics: a graph-based approach. XRDS, 2012.

19(3): p. 37-43.

20. Sangwon, S., et al. HAMA: An Efficient Matrix

Computation with the MapReduce Framework. in

Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International

Conference on. 2010.

21. Shao, B., H. Wang, and Y. Li. The Trinity Graph

Engine. 2012. Microsoft Research Asia, Beijing,

China.

22. Stanton, I. and G. Kliot, Streaming graph

partitioning for large distributed graphs, in

Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery

and data mining2012, ACM: Beijing, China. p.

1222-1230.

23. Titan. http://thinkaurelius.github.com/titan/ 2012.

24. Tsourakakis, C.E., et al. FENNEL: Streaming

Graph Partitioning for Massive Scale Graphs. in

MSR Technical Report. 2012.

25. Wikipedia.

http://dumps.wikimedia.org/enwiki/latest/enwiki-

latest-pages-articles1.xml-

p000000010p000010000.bz2. 2012.

26. Willke, T.L., N. Jain, and H. Gu. GraphBuilder – A

Scalable Graph Construction Library for Apache

Hadoop. in Big Learning WS at NIPS. 2012. Las

Vegas.

http://www.01.org/graphbuilder
http://snap.stanford.edu/snap/index.html
http://glaros.dtc.umn.edu/gkhome/views/metis/
http://neo4j.org/
http://thinkaurelius.github.com/titan/
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles1.xml-p000000010p000010000.bz2
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles1.xml-p000000010p000010000.bz2
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles1.xml-p000000010p000010000.bz2

