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BSackground & Motivation

My research at Stanford:
= Mining large social and information networks
= We work with data from Facebook, Twitter,
LinkedIn, Wikipedia, StackOverflow

Much research on graph processing
systems but we don’t find it that useful...

Why is that”? What tools do we use”?
What do we see are some big challenges?



Some Observations

= \We do not develop experimental
systems to compete on benchmarks

= BFS, PageRank, Triangle counting, etc.

= Qur work is

= Knowledge discovery: Working on new
problems using novel datasets to extract
new knowledge

= And as a side effect developing (graph)
algorithms and software systems



—nd-to-End Graph Analytics
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Typical Workload

= Finding experts on StackOverflow:
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Observation

Graphs are never given!
Graphs have to be constructed from input

datal (graph constructions is a part of
knowledge discovery process)

Examples:

= Facebook graphs: Friend, Communication,
Poke, Co-tag, Co-location, Co-event

= Cellphone/Email graphs: How many calls?
= Biology: P2P, Gene interaction networks
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Graph Analytics Workflow

Hadoop Q"
MapReduce 3 é
> é?
h

Raw data Structured data Graph analytics
video, text, sound, events, Relational tables
sensor data, gene
sequences, documents, ...

= |nput: Structured data

= Qutput: Results of network analyses
= Node, edge, network properties
= Expanded relational tables
= Networks
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Plan for the Talk: Three Topics

= SNAP: an in-memory system for
end-to-end graph analytics

= Constructing graphs from data
= Multimodal networks

= Representing richer types of graphs
= New graph algorithms

= Higher-order network partitioning

= Feature learning in networks



SNAP

Stanford Network
Analysis Platform

SNAP: A General Purpose Network Analysis and Graph Mining Library.
R. Sosic, J. Leskovec. ACM TIST 2016.

RINGO: Interactive Graph Analytics on Big-Memory Machines Y. Perez, R. Sosic,
A. Banerjee, R. Puttagunta, M. Raison, P. Shah, J. Leskovec. SIGMOD 2015.
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—nd-to-End Graph Analytics

% s %‘éo S New knowledge
céoé’ and insights

Data Graph analytics

= Stanford Network Analysis Platform (SNAP)
General-purpose, high-performance system
for analysis and manipulation of networks
= C++, Python (BSD, open source)
= http://snap.stanford.edu

= Scales to networks with hundreds of millions
of nodes and billions of edges




Desiderata for Graph Analytics

= Fasy to use front-end
= Common high-level programming language
= Fast execution times
= |nteractive use (as opposed to batch use)
= Ability to process large graphs
= Billionsof edges
= Support for several data representations
= Transformations between tables and graphs
= [arge number of graph algorithms
= Straightforwardto use
= Workflow management and reproducibility
= Provenance
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Data Sizes in Network Analytics

Number of Edges Number of Graphs

<0.1M 16
0.1M - 1M 25
1M - 10M 17
10M - 100M V4
100M - 1B o

> 1B 1

= Networks in Stanford Large Network Collection
= http://snap.stanford.edu

= Common benchmark Twitter2010 graph has 1.5B
edges, requires 13.2GB RAM in SNAP
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Network of all Published research

Papers 122.7/M 32.4GB

Authors 123.1M 3.1GB
References 757.5M 14.4GB
Affiliations 325.4M 15.3GB
Keywords 176.8M 5.9GB
Total 1.9B 104.1GB

= Microsoft Academic Graph

Jure Leskovec, Stanford 13



Biomedical

Research

DisGeNet
STRING

OMIM

CTD

HPRD

BioGRID
DrugBank
Disease Ontology
Protein Ontology
Mesh Hierarchy
PubChem
DGldb

Gene Ontology
MSigDB
Reactome

GEO

ICGC (66 cancer projects)

GTEx

30K
10M
25K
55K
30K
64K
7K
10K
200K
30K
90M
5K
45K
14K
20K
1.7M
40M
50M

10MB
1B
100MB
1.2GB
30MB
100MB
60MB
5MB
130MB
40MB
1GB
30MB
10MB
70MB
100MB
80GB
1B
100GB

Total: 250M entities, 2.21B raw data
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Avallabllity of Hardware

Could all these datasets fit into RAM of
a single machine”

Single machine prices:
= Server 1TB RAM, 80 cores, $25K
= Server 6TB RAM, 144 cores, $200K
= Server 12TB RAM, 288 cores, $400K

In my group we have 1TB RAM machines since
2012 and just got a 12TB RAM machine



Dataset vs. RAM Sizes

= KDNuggets survey since 2006
surveys: “What is the largest dataset

you analyzed/mined?”
= Big RAM is eating big data:

= Yearly increase of dataset sizes: 20%
= Yearly increase of RAM sizes: 50%

Bottom line: Want to do graph
analytics”? Get a BIG machine!




Trade-ofts

Option 1 Option 2

Standard SQL database Custom representations
Separate systems for Integrated system for
tables and graphs tables and graphs
Single representation for Separate table and graph

tables and graphs representations
Distributed system Single machine system
Disk-based structures In-memory structures

SNAP
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Graph Analytics: SNAP

Sgggify> Sglecify s Optimize 5 %"é
entities | relationships representation %

Relational
Unstructured tables Tabular Network
data networks representation
t 3 )
‘1' Perform
Integrate graph analytics
results

Results S N AP
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—xperts on StackOverflow
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Graph Construction in SNAP

= SNAP (Python) code for executing
finding the StackOverflow example

P = ringo.LoadTable (schema,’posts.tsv’)

JP = ringo.Select (P,’ Tag=Jdava’)

Q = ringo.Select (JP,’ Type=question’)

A = ringo.Select (JP,’ Type=answer’)

QA = ringoJdoin(Q,A,’AnswerId’,’PostId’)

G = ringo.ToGraph (QA, ’UserId.1l’,’UserId.2’)
PR = ringo.GetPageRank (G)

S = ringo.ToTable (PR, ’UserId’,’ Score’)
ringo.Save (S, '’ scores.bin’)

RINGO: Interactive Graph Analytics on Big-Memory Machines Y. Perez, R. Sosic,
A. Banerjee, R. Puttagunta, M. Raison, P. Shah, J. Leskovec. SIGMOD 2015.
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SNA

P Qverview

High-Level Language User Front-End

Interface with Graph
Processing Engine
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SNAP: In-memory Graph Processing Engine
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Graph Construction

Input data must be manipulated and
transformed into graphs

vl v2
v2 v3
- v3 v4
vl v3

vl va

Table data Graph data
structure structure

I




Creating a Graph in SNAP

Four ways to create a graph:
Nodes connected based on
(1) Pairwise node similarity
(2) Temporal order of nodes
(3) Grouping and aggregation of nodes

(4) The data already contains edges as
source and destination pairs



Creating Graphs in SNAP (1)

Similarity-based: In a forum, connect
users that post to similar topics

= Distance metrics
= Fuclidean, Haversine, Jaccard distance

= Connect similar nodes

= SimJoin, connect if data points are closer
than some threshold

= How to get around quadratic complexity
— Locality Sensitive Hashing
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Creating Graphs in SNAP (2)

Sequence-based: In a Web log,
connect pages in an order clicked by
the users (click-trail)

= Connect a node with its K successors

= Events selected per user, ordered by
timestamps

= NextK, connect K successors

Jure Leskovec, Stanford 25



Creating Graphs in SNAP (3)

= Aggregation: Measure the activity
level of different user groups

= Edge creation
= Partition users to groups
= |dentify interactions within each group
= Compute a score for each group based on
interactions

= Treat groups as super-nodes in a graph



Graphs and Methods

generation manipulation analytics Graph methods

Graph containers

= SNAP supports several graph types
* Directed, Undirected, Multigraph

= >200 graph algorithms

= Any algorithm works on any container



SNAP Implementation

= High-level front end
= Python module
= Uses SWIG for C++ interface

» High-performance graph engine
= C++ based on SNAP

= Multi-core support

= OpenMP to parallelize loops

= Fast, concurrent hash table, vector
operations



Graphs in SNAP
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Directed graphs in SNAP Directed multigraphs in SNAP
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=Xperiments: Datasets

Dataset Twitter2010
42M

Nodes 4.8M
Edges 69OM 1.58B
Text Size (disk) 1.1GB 26.2GB
Graph Size
(RAM) 0.7GB 13.2GB
o Sl 1.1GB 23.5GB

IY)
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Benchmarks, One Computer

Algorithm PageRank | PageRank Triangles Triangles
Graph LivedJournal | Twitter2010 | LivedJournal | Twitter2010
Giraph 45.6s 439.3s N/A N/A

GraphX 56.0s - 67.6s -

(Cig:Tola[®]g] 54.0s 595.3s 066.5s -

PowerGraph 27.5s 251.7s 5.4s 706.8s

2.6s 72.0s 13.7s 284.1s

Hardware: 4x Intel CPU, 64 cores, 1TB RAM, $35K
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Published Benchmarks

4

GraphChi 1

8x core AMD, 64GB RAM  158s

TurboGraph 1 1 6x core Intel, 12GB RAM  30s
Spark 50 2 97s
GraphX 16 1 8X core Intel, 68GB RAM 155

PowerGraph eZ 2 8x hyper Intel, 23GB RAM  3.6s

1 4  20x hyper Intel, 1TB RAM 6.0s

Twitter2010, one iteration of PageRank
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SNAP: Sequential Algorithms

Agorttm

3-core 31.0s
Single source

shortest path T

Strongly connected 18,08

components

LivedJournal, 1 core



SNAP: Sequential Algorithms
Agoritm
14

In-degree 1 core

Out-degree 8 1 core
PageRank 115 64 cores
Triangles 107 64 cores

CC 1,716 1 core

K-core 2,325 1 core

= Benchmarks on the citation graph:
nodes 50M, edges 757M
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SNAP: Tables and Graphs

Tiwitter2010
Table to 8.5s 81.0s

graph 13.0 MEdges/s 18.0 MEdges/s
Graph to 1.5s 29.2s

table 46.0 MEdges/s 50.4 MEdges/s

Hardware: 4x Intel CPU, 80 cores, 1TB RAM, $35K




SNAP: Table Operations

Tiiter2010
<0.1s 1.6s
575.0 MRows/s 917.7 MRows/s

. 0.6s 4.2s
Join 109.5 MRows/s  348.8 MRows/s
Load graph 5.25 76.6s
Save graph 3.5s 69.0s

Hardware: 4x Intel CPU, 80 cores, 1TB RAM, $35K



Multimodal Networks:

A network of networks




Multimodal Networks

ode links
Mode

Cross mode links

Ol”’

Network of networks



Why multimodal networks?

= Can encode additional semantic
structure than a “simple” graph

= Many naturally occurring graphs are
multimodal networks
= (Gene-drug-disease networks
= Social networks,
= Academic citation graphs



Multimodal Network Example

<«——— Direct
<= = = = = |ndirect
Part of

Phosphorylate R
Aceylation - /é\)\%‘e
Dissociation & QL
Degradation
Stability
Localizes
Binds
]' Co-occur Association
Regulates | P Coexpress [P
Expression b, _ 7 Co-localize
' .
L}
-
Linked with 1 —
1
Symptoms

Jure Leskovec, Stanford 40



Challenges

Multimoral network requirements:

= [ast processing
= Efficient traversal of nodes and edges

= Dynamic structure

= Quickly add/remove nodes and edges
= Create subgraphs, dynamic graphs, ...

= [radeoff

= High performance, fixed structure
= Highly flexible structure, low performance

Jure Leskovec, Stanford



Piggyback on a Graph

Why can’t we just piggyback extra
information onto a regular graph”?

= \Want to ensure that per-mode
iInformation is easily accessible as a unit

= \WWant more fine-grained control as to
where certain vertex and edge
iInformation resides

= \Want indexes that allow for easy
random access

Jure Leskovec, Stanford



Piggyback mode information

Benchmark multimodal graph:

Each nodein
modes 0to Qs
connectedto 10
of the nodes in

mode 10
w ) *  Modes 0to 9 have 10K nodes
g each and 100M edges each
Nodes in modes 0 to 9 are fully e  Mode 10 has X nodes
connected to each other e Eachnodeinmodes0to9is

connected to all nodes inmode 10

X controls randomness of redundant edges
(while the output size is fixed)
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Time (in seconds)

=Xperiment

1000 [ : : : :
v

100 F R — R e — R —
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- . * ?

11 [ S O R e .
i ¢ | v

0.01 e Rl s e
0.001 | ' ' ' .

SG(0,1) SG(0,1,4) SG(0to 9) GNIds(0,1,3)
Workloads

x=1000 e x=100000
x=10000 < x=1000000
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Extract subgraph
on given modes
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How to be faster?

= Remember: Everything is in memory
so don’t need to worry about disk

= Desirable properties:

= Stay in cache as much as possible as
MEeMOory acCeSSeS are expensive in
comparison
= |.e., we want good memory locality

= Cheap index lookups that allow us to
avoid having to look at the entire data
structure

Jure Leskovec, Stanford



Multimodal Networks

S
‘.
O O

= |dea 1: Represent the multimodal graph
as a collection of bipartite graphs

= |dea 2: Consolidate node hash tables
= |dea 3: Consolidate adjacency lists



ldea 1: BGC

BGC (Bipartite Graph Collection):
Collection of per-mode bipartite graphs

f
Nodes can be
repeated
aceoss different Each node objectin a
raphs node hash table maps
Jrap to a list of in- and out-
- L neighbors

k(k+1)/2 bipartite
graphs, each bipartite
graph has its own
node hash table
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|[dea 2: Hybrid

Hybrid: Collection of per-mode node
hash tables along with individual per-
mode adjacency lists

2 _“:L‘
Nodes only » [ T T 1

- Each node object
appear ina < gl L L L in a node hash
single node = table maps to k

hash table lists of in- and out-

neighbors sorted

S\:— by node-id

k node hash tables




Nodes
only
appear in
asingle
node hash
table

<

f

ldea 3: MNCA

MNCA (Multi-node hash table,
consolidated adjacency lists): Per-mode
node hash tables + big adjacency list

<<

k node hash tables

}

Each node objectin
a node hash table
maps to a
consolidated list of
in- and out-
neighbors sorted by
(mode-id, node-id)



S0, how do we do?

1000 F 3
- 3 3 Y 3
100 fo e e e
- [ * | 3.5x order of
3 ([1 ] E— — A T S
5 : 7 magnitude
o i | | | .
c TEo o | improvement!
o .
£ 01 SE———— SE—— T SE———
: - o
] S S —
0.001 L ; ; ; ;
SG(0,1) SG(0,1,4) SG(0to 9) GNIds(0,1,3)
Workloads
Naive e BGC MNCA & Hybrid v

modes in total
10k nodes in modes 0-9; edges between all nodes

1M nodes in mode 10; edges between every node In
mode 10 and all other nodes (total of 110B edges)
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Tradeoffs by Workload

= Workload type:

BGC Hybrid MNCA

Per-mode Nodeld lookups
é Q/

All-adjacent Nodeld accesses v,

‘/ Per-mode ad'lacent Nodeld accesses
‘/ I\/Iode—Eair SubGraEh accesses
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Tradeoffs by Graph Type

= Graph type:

BGC Hybrid MNCA
Sparser graphs
v/
Denser graphs
v/

Number of out-neighbors

v



Latest Algorithms:

Feature Learning in
Graphs

node?2vec: Scalable Feature Learning for Networks
A. Grover, J. Leskovec. KDD 2016.




Machine Learning Lifecycle

= (Supervised) Machine Learning
Lifecycle: This feature, that feature.
Every single time!

Raw Structured Learning
Data | ‘ Algorithm
>

<«

t Automatically Downstream
Eng#odug learn the features prediction task




Feature Learning in Graphs

Goal: Learn features for a set of objects

Feature learning in graphs:
= Given: G = (V, F)
* Learnafunction: f:V — R?

= Not task specific: Just given a graph,
learn 1. Can use the features for any
downstream task!



Unsupervised Feature Learning

= |ntuition: FiInd a mapping of nodes to
d-dimensions that preserves some
sort of node similarity

= |dea: Learn node embedding such
that nearby nodes are close together

= (Given a node u, how do we define
nearby nodes”?

= Ng(u) ... neighbourhood of u obtained by
sampling strategy S



Unsupervised Feature Learning

= Goal: Find embedding that predicts
nearby nodes Nq(u):

max Y log Pr(Ns(u)|f(u))

f
ueV
= Make independence assumption:
Pr(Ns(u)|f(w) = ][ Prnilf(w)

n;ENg(u)
exp(f(ni) - f(u))
> vey €xXP(f(v) - f(u))

Estimate f(u) using stochastic gradient descent.

Pr(ni|f(u)) =




How to determine Ng(u)

Two classic search strategies to define
a neighborhood of a given node:

for |Ns(U)| =3



BFS vs. DFS

BFS: DFS:
Micro-view of Macro-view of
neighbourhood neighbourhood

Structural vs. Homophilic equivalence



BFS vs. DFS

Structural vs. Homophilic equivalence

BFS-based:

Structural equivalence
(structural roles)

DFS-based:
Homophily
(network communities)

ovec, Stanford 60



Interpolating BFS and DFS

= Biased random walk procedure, that
given a node u samples Nq(u)

The walk just traversed (t,v) and aims to make a next step.



Multilabel Classification

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) | 0.25,0.25 4, 1 4, 0.5
Gain of node2vec [ %] 22.3 1.3 21.8

= Spectral embedding
= DeepWalk [B. Perozzi et al., KDD ‘14]
= LINE [J. Tang et al.. WWW 19]
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Incomplete Network Data (PP

Macro-F, score
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Fraction of missing edges Fraction of additional edges
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Conclusion




Conclusion

= Big-memory machines are here:

= 1TB RAM, 100 Cores = a small cluster
= No overheads of distributed systems

= Easy to program
= Most “useful” datasets fit in memory

= Big-memory machines present a
viable solution for analysis of all-but-

the-largest networks



Graphs have to be Built

ﬁraph construction graph analyt\
operatlons

=B

Relationaltables Graphs and networks

: Graphs have to built from data
* Processing of tables and graphs



Multimodal Networks

Graphs are more than wiring diagrams

Multimodal network: A network of
Networks

Building scalable data structures

NUMA architectures
provide interesting
new tradeoffs

awe | R
-' '-
1/0




Building Robust Systems

How to get robust performance always?

= Ongoing/future work

= Better characterize the optimal
representation required given workload
and graph type

= Try to dynamically switch representations
when nodes get sufficiently high degrees
or particular queries become more
common

= Benchmark on real data and real queries
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