End-toEnd In-memory Graph Analytics

Jure Leskovec (@jure)

Including joint work with Rok Sosic, Deepak Narayanan, Yonathan Perez, et al.

Background & Motivation

My research at Stanford:

- Mining large social and information networks
- We work with data from Facebook, Twitter, LinkedIn, Wikipedia, StackOverflow

Much research on graph processing systems but we don't find it that useful...

Why is that? What tools do we use? What do we see are some big challenges?

Some Observations

- We do not develop experimental systems to compete on benchmarks
 - BFS, PageRank, Triangle counting, etc.
- Our work is
 - Knowledge discovery: Working on new problems using novel datasets to extract new knowledge
 - And as a side effect developing (graph) algorithms and software systems

End-to-End Graph Analytics

Need end-to-end graph analytics system that is flexible, scalable, and allows for easy implementation of new algorithms.

Typical Workload

Finding experts on StackOverflow:

Observation

Graphs are never given! Graphs have to be constructed from input data! (graph constructions is a part of knowledge discovery process)

Examples:

- Facebook graphs: Friend, Communication, Poke, Co-tag, Co-location, Co-event
- Cellphone/Email graphs: How many calls?
- Biology: P2P, Gene interaction networks

Graph Analytics Workflow

- Input: Structured data
- Output: Results of network analyses
 - Node, edge, network properties
 - Expanded relational tables
 - Networks

Plan for the Talk: Three Topics

- SNAP: an in-memory system for end-to-end graph analytics
 - Constructing graphs from data
- Multimodal networks
 - Representing richer types of graphs
- New graph algorithms
 - Higher-order network partitioning
 - Feature learning in networks

SNAP Stanford Network Analysis Platform

<u>SNAP: A General Purpose Network Analysis and Graph Mining Library.</u> R. Sosic, J. Leskovec. ACM TIST 2016.

<u>RINGO: Interactive Graph Analytics on Big-Memory Machines</u> Y. Perez, R. Sosic, A. Banerjee, R. Puttagunta, M. Raison, P. Shah, J. Leskovec. SIGMOD 2015.

End-to-End Graph Analytics

- Stanford Network Analysis Platform (SNAP) General-purpose, high-performance system for analysis and manipulation of networks
 - C++, Python (BSD, open source)
 - http://snap.stanford.edu
- Scales to networks with hundreds of millions of nodes and billions of edges

Desiderata for Graph Analytics

- Easy to use front-end
 - Common high-level programming language
- Fast execution times
 - Interactive use (as opposed to batch use)
- Ability to process large graphs
 - Billions of edges
- Support for several data representations
 - Transformations between tables and graphs
- Large number of graph algorithms
 - Straightforward to use
- Workflow management and reproducibility
 - Provenance

Data Sizes in Network Analytics

Number of Edges	Number of Graphs
<0.1M	16
0.1M – 1M	25
1M – 10M	17
10M – 100M	7
100M – 1B	5
> 1B	1

- Networks in Stanford Large Network Collection
 - <u>http://snap.stanford.edu</u>
 - Common benchmark Twitter2010 graph has 1.5B edges, requires 13.2GB RAM in SNAP

Network of all Published research

Entity	#Items	Size
Papers	122.7M	32.4GB
Authors	123.1M	3.1GB
References	757.5M	14.4GB
Affiliations	325.4M	15.3GB
Keywords	176.8M	5.9GB
Total	1.9B	104.1GB

Microsoft Academic Graph

All Biomedical Research

Dataset	#Items	Raw Size
DisGeNet	30K	10MB
STRING	10M	1TB
OMIM	25K	100MB
CTD	55K	1.2GB
HPRD	30K	30MB
BioGRID	64K	100MB
DrugBank	7К	60MB
Disease Ontology	10K	5MB
Protein Ontology	200K	130MB
Mesh Hierarchy	30K	40MB
PubChem	90M	1GB
DGldb	5K	30MB
Gene Ontology	45K	10MB
MSigDB	14K	70MB
Reactome	20K	100MB
GEO	1.7M	80GB
ICGC (66 cancer projects)	40M	1TB
GTEx	50M	100GB

Total: 250M entities, 2.2TB raw data

Availability of Hardware

Could all these datasets fit into RAM of a single machine?

Single machine prices:

- Server 1TB RAM, 80 cores, \$25K
- Server 6TB RAM, 144 cores, \$200K
- Server 12TB RAM, 288 cores, \$400K

In my group we have 1TB RAM machines since 2012 and just got a 12TB RAM machine

Dataset vs. RAM Sizes

- KDNuggets survey since 2006 surveys: "What is the largest dataset you analyzed/mined?"
- Big RAM is eating big data:
 - Yearly increase of dataset sizes: 20%
 - Yearly increase of RAM sizes: 50%

Bottom line: Want to do graph analytics? **Get a BIG machine!**

Trade-offs

Option 1	Option 2
Standard SQL database	Custom representations
Separate systems for tables and graphs	Integrated system for tables and graphs
Single representation for tables and graphs	Separate table and graph representations
Distributed system	Single machine system
Disk-based structures	In-memory structures
	SNAP

Graph Analytics: SNAP

Experts on StackOverflow

Graph Construction in SNAP

 SNAP (Python) code for executing finding the StackOverflow example

P = ringo.LoadTable(schema,'posts.tsv')
JP = ringo.Select(P,'Tag=Java')
Q = ringo.Select(JP,'Type=question')
A = ringo.Select(JP,'Type=answer')
QA = ringoJoin(Q,A,'AnswerId','PostId')
G = ringo.ToGraph(QA,'UserId.1','UserId.2')
PR = ringo.GetPageRank(G)
S = ringo.ToTable(PR,'UserId','Score')
ringo.Save(S,'scores.bin')

<u>RINGO: Interactive Graph Analytics on Big-Memory Machines</u> Y. Perez, R. Sosic, A. Banerjee, R. Puttagunta, M. Raison, P. Shah, J. Leskovec. SIGMOD 2015.

SNAP Overview

Graph Construction

Input data must be manipulated and transformed into graphs

structure

Graph data structure

Creating a Graph in SNAP

Four ways to create a graph: Nodes connected based on

- (1) Pairwise node similarity
- (2) Temporal order of nodes
- (3) Grouping and aggregation of nodes(4) The data already contains edges as source and destination pairs

Creating Graphs in SNAP (1)

Similarity-based: In a forum, connect users that post to similar topics

- Distance metrics
 - Euclidean, Haversine, Jaccard distance
- Connect similar nodes
 - SimJoin, connect if data points are closer than some threshold
 - How to get around quadratic complexity
 - Locality Sensitive Hashing

Creating Graphs in SNAP (2)

Sequence-based: In a Web log, connect pages in an order clicked by the users (click-trail)

- Connect a node with its K successors
 - Events selected per user, ordered by timestamps
 - NextK, connect K successors

Creating Graphs in SNAP (3)

- Aggregation: Measure the activity level of different user groups
 - Edge creation
 - Partition users to groups
 - Identify interactions within each group
 - Compute a score for each group based on interactions
 - Treat groups as super-nodes in a graph

Graphs and Methods

- SNAP supports several graph types
 - Directed, Undirected, Multigraph
- >200 graph algorithms
- Any algorithm works on any container

SNAP Implementation

- High-level front end
 - Python module
 - Uses SWIG for C++ interface
- High-performance graph engine
 - C++ based on SNAP
- Multi-core support
 - OpenMP to parallelize loops
 - Fast, concurrent hash table, vector operations

Graphs in SNAP

Directed graphs in SNAP

Directed multigraphs in SNAP

Experiments: Datasets

Dataset	LiveJournal	Twitter2010
Nodes	4.8M	42M
Edges	69M	1.5B
Text Size (disk)	1.1GB	26.2GB
Graph Size (RAM)	0.7GB	13.2GB
Table Size (RAM)	1.1GB	23.5GB

Benchmarks, One Computer

Algorithm Graph	PageRank LiveJournal	PageRank Twitter2010	Triangles LiveJournal	Triangles Twitter2010
Giraph	45.6s	439.3s	N/A	N/A
GraphX	56.0s	-	67.6s	-
GraphChi	54.0s	595.3s	66.5s	-
PowerGraph	27.5s	251.7s	5.4s	706.8s
SNAP	2.6s	72.0s	13.7s	284.1s

Hardware: 4x Intel CPU, 64 cores, 1TB RAM, \$35K

Published Benchmarks

System	Hosts	CPUs host	Host Configuration	Time
GraphChi	1	4	8x core AMD, 64GB RAM	158s
TurboGraph	1	1	6x core Intel, 12GB RAM	30s
Spark	50	2		97s
GraphX	16	1	8X core Intel, 68GB RAM	15s
PowerGraph	64	2	8x hyper Intel, 23GB RAM	3.6s
SNAP	1	4	20x hyper Intel, 1TB RAM	6.0s

Twitter2010, one iteration of PageRank

SNAP: Sequential Algorithms

Algorithm	Runtime
3-core	31.0s
Single source shortest path	7.4s
Strongly connected components	18.0s

LiveJournal, 1 core

Jure Leskovec, Stanford

SNAP: Sequential Algorithms

Algorithm	Time (s)	Implementation
In-degree	14	1 core
Out-degree	8	1 core
PageRank	115	64 cores
Triangles	107	64 cores
WCC	1,716	1 core
K-core	2,325	1 core

 Benchmarks on the citation graph: nodes 50M, edges 757M

SNAP: Tables and Graphs

Dataset	LiveJournal	Twitter2010
Table to	8.5s	81.0s
graph	13.0 MEdges/s	18.0 MEdges/s
Graph to	1.5s	29.2s
table	46.0 MEdges/s	50.4 MEdges/s

Hardware: 4x Intel CPU, 80 cores, 1TB RAM, \$35K

SNAP: Table Operations

Dataset	LiveJournal	Twitter2010
Select	<0.1s 575.0 MRows/s	1.6s 917.7 MRows/s
Join	0.6s 109.5 MRows/s	4.2s 348.8 MRows/s
Load graph	5.2s	76.6s
Save graph	3.5s	69.0s

Hardware: 4x Intel CPU, 80 cores, 1TB RAM, \$35K

Multimodal Networks: A network of networks

Multimodal Networks

Why multimodal networks?

- Can encode additional semantic structure than a "simple" graph
- Many naturally occurring graphs are multimodal networks
 - Gene-drug-disease networks
 - Social networks,
 - Academic citation graphs

Multimodal Network Example

Jure Leskovec, Stanford

Challenges

- Multimoral network requirements:
- Fast processing
 - Efficient traversal of nodes and edges
- Dynamic structure
 - Quickly add/remove nodes and edges
 - Create subgraphs, dynamic graphs, ...
- Tradeoff
 - High performance, fixed structure
 - Highly flexible structure, low performance

Piggyback on a Graph

Why can't we just piggyback extra information onto a regular graph?

- Want to ensure that per-mode information is easily accessible as a unit
- Want more fine-grained control as to where certain vertex and edge information resides
- Want indexes that allow for easy random access

Piggyback mode information

Benchmark multimodal graph:

connected to each other

Each node in modes 0 to 9 is connected to 10 of the nodes in mode 10

- Modes 0 to 9 have 10K nodes each and 100M edges each
- Mode 10 has X nodes
- Each node in modes 0 to 9 is connected to all nodes in mode 10

X controls randomness of redundant edges (while the output size is fixed)

Jure Leskovec, Stanford

Experiment

Jure Leskovec, Stanford

How to be faster?

- Remember: Everything is in memory so don't need to worry about disk
- Desirable properties:
 - Stay in cache as much as possible as memory accesses are expensive in comparison
 - I.e., we want good memory locality
 - Cheap index lookups that allow us to avoid having to look at the entire data structure

Multimodal Networks

- Idea 1: Represent the multimodal graph as a collection of bipartite graphs
- Idea 2: Consolidate node hash tables
- Idea 3: Consolidate adjacency lists

Idea 1: BGC

BGC (Bipartite Graph Collection): Collection of per-mode bipartite graphs

Each node object in a node hash table maps to a list of in- and outneighbors

Idea 2: Hybrid

Hybrid: Collection of per-mode node hash tables along with individual permode adjacency lists

Idea 3: MNCA

MNCA (Multi-node hash table, consolidated adjacency lists): Per-mode node hash tables + big adjacency list

Each node object in a node hash table

maps to a

consolidated list of in- and outneighbors sorted by (mode-id, node-id)

So, how do we do?

- 10k nodes in modes 0-9; edges between all nodes
- 1M nodes in mode 10; edges between every node in mode 10 and all other nodes (total of 110B edges)

Tradeoffs by Workload

Workload type:

BGC

Hybrid

Per-mode Nodeld lookups

All-adjacent Nodeld accesses

Per-mode adjacent Nodeld accesses

Mode-pair SubGraph accesses

MNCA

Tradeoffs by Graph Type

Graph type:

BGC

Hybrid

Sparser graphs

Denser graphs

Number of out-neighbors

MNCA

Latest Algorithms: Feature Learning in Graphs

<u>node2vec: Scalable Feature Learning for Networks</u> A. Grover, J. Leskovec. KDD 2016.

Machine Learning Lifecycle

 (Supervised) Machine Learning Lifecycle: This feature, that feature.
 Every single time!

Feature Learning in Graphs

Goal: Learn features for a set of objects

Feature learning in graphs:

- Given: G = (V, E)
- Learn a function: $f: V \to \mathbb{R}^d$
 - Not task specific: Just given a graph, learn f. Can use the features for <u>any</u> downstream task!

Unsupervised Feature Learning

- Intuition: Find a mapping of nodes to d-dimensions that preserves some sort of node similarity
- Idea: Learn node embedding such that nearby nodes are close together
- Given a node u, how do we define nearby nodes?
 - N_S(u) ... neighbourhood of u obtained by sampling strategy S

Unsupervised Feature Learning

• Goal: Find embedding that predicts nearby nodes $N_S(u)$:

$$\max_{f} \quad \sum_{u \in V} \log \Pr(N_{S}(u)|f(u))$$

• Make independence assumption: $Pr(N_{S}(u)|f(u)) = \prod_{n_{i} \in N_{S}(u)} Pr(n_{i}|f(u))$ $Pr(n_{i}|f(u)) = \frac{\exp(f(n_{i}) \cdot f(u))}{\exp(f(n_{i}) \cdot f(u))}$

$$Pr(n_i|f(u)) = \frac{1}{\sum_{v \in V} \exp(f(v) \cdot f(u))}$$

Estimate f(u) using stochastic gradient descent.

How to determine $N_S(u)$

Two classic search strategies to define a neighborhood of a given node:

for $|N_S(u)| = 3$

BFS vs. DFS

BFS: Micro-view of neighbourhood

Structural vs. Homophilic equivalence

BFS vs. DFS

Structural vs. Homophilic equivalence

BFS-based: Structural equivalence (structural roles) DFS-based: Homophily (network communities)

Interpolating BFS and DFS

Biased random walk procedure, that given a node u samples $N_S(u)$

The walk just traversed (t, v) and aims to make a next step.

Multilabel Classification

Algorithm	Dataset		
	BlogCatalog	PPI	Wikipedia
Spectral Clustering	0.0405	0.0681	0.0395
DeepWalk	0.2110	0.1768	0.1274
LINE	0.0784	0.1447	0.1164
node2vec	0.2581	0.1791	0.1552
node2vec settings (p,q)	0.25, 0.25	4, 1	4, 0.5
Gain of node2vec [%]	22.3	1.3	21.8

- Spectral embedding
- DeepWalk [B. Perozzi et al., KDD '14]
- LINE [J. Tang et al.. WWW '15]

Incomplete Network Data (PPI)

Jure Leskovec, Stanford

Conclusion

Conclusion

- Big-memory machines are here:
 - 1TB RAM, 100 Cores ≈ a small cluster
 - No overheads of distributed systems
 - Easy to program
- Most "useful" datasets fit in memory
- Big-memory machines present a viable solution for analysis of all-butthe-largest networks

Graphs have to be Built

Graphs have to built from data
Processing of tables and graphs

Multimodal Networks

- Graphs are more than wiring diagrams
- Multimodal network: A network of Networks
- Building scalable data structures

Jure Leskovec, Stanford

 NUMA architectures provide interesting new tradeoffs

Building Robust Systems

How to get robust performance <u>always</u>?

- Ongoing/future work
 - Better characterize the optimal representation required given workload and graph type
 - Try to dynamically switch representations when nodes get sufficiently high degrees or particular queries become more common
 - Benchmark on real data and real queries

References

Papers:

- <u>SNAP: A General Purpose Network Analysis and Graph</u> <u>Mining Library.</u>
 R. Sosic, J. Leskovec. ACM TIST 2016.
- <u>Ringo: Interactive Graph Analytics on Big-Memory</u> <u>Machines</u> by Y. Perez, R Sosic, A. Banerjee, R. Puttagunta, M. Raison, P. Shah, J. Leskovec. SIGMOD 2015.
- <u>node2vec: Scalable Feature Learning for Networks</u>. A. Grover, J. Leskovec. KDD 2016.
- Software:
 - <u>http://snap.stanford.edu/ringo/</u>
 - <u>http://snap.stanford.edu/snappy</u>
 - <u>https://github.com/snap-stanford/snap</u>

1. 2. 4 .

CameWallpapers.com hose by JTLnet.com

27