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Background & Motivation
My research at Stanford:

§ Mining large social and information networks
§ We work with data from Facebook,Twitter, 

LinkedIn, Wikipedia, StackOverflow
Much research on graph processing 
systems but we don’t find it that useful…
Why is that? What tools do we use?
What do we see are some big challenges?
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Some Observations
§ We do not develop experimental 

systems to compete on benchmarks
§ BFS, PageRank, Triangle counting, etc.

§ Our work is
§ Knowledge discovery: Working on new 

problems using novel datasets to extract 
new knowledge

§ And as a side effect developing (graph) 
algorithms and software systems
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End-to-End Graph Analytics

Need end-to-end graph analytics 
system that is flexible, scalable, 

and allows for easy implementation 
of new algorithms.
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Data Graph analytics

New knowledge
and insights



Typical Workload
§ Finding experts on StackOverflow:
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Observation

Examples:
§ Facebook graphs: Friend, Communication, 

Poke, Co-tag, Co-location, Co-event
§ Cellphone/Email graphs: How many calls?
§ Biology: P2P, Gene interaction networks
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Graphs are never given! 
Graphs have to be constructed from input 

data! (graph constructions is a part of 
knowledge discovery process)



Graph Analytics Workflow

§ Input: Structured data
§ Output: Results of network analyses

§ Node, edge, network properties
§ Expanded relational tables
§ Networks
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Hadoop
MapReduce

Graph analyticsStructured data
Relational tables

Raw data
video, text, sound, events, 

sensor data, gene 
sequences, documents, …



Plan for the Talk: Three Topics
§ SNAP: an in-memory system for 

end-to-end graph analytics
§ Constructing graphs from data

§ Multimodal networks
§ Representing richer types of graphs

§ New graph algorithms
§ Higher-order network partitioning
§ Feature learning in networks
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SNAP
Stanford Network 
Analysis Platform
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SNAP: A General Purpose Network Analysis and Graph Mining Library.
R. Sosic, J. Leskovec. ACM TIST 2016.
RINGO: Interactive Graph Analytics on Big-Memory Machines Y. Perez, R. Sosic, 
A. Banerjee, R. Puttagunta, M. Raison, P. Shah, J. Leskovec. SIGMOD 2015.



End-to-End Graph Analytics

§ Stanford Network Analysis Platform (SNAP)
General-purpose, high-performance system 
for analysis and manipulation of networks
§ C++, Python (BSD, open source)
§ http://snap.stanford.edu

§ Scales to networks with hundreds of millions 
of nodes and billions of edges
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Data Graph analytics

New knowledge
and insights



Desiderata for Graph Analytics
§ Easy to use front-end

§ Common high-level programming language
§ Fast execution times

§ Interactive use (as opposed to batch use)
§ Ability to process large graphs

§ Billions of edges
§ Support for several data representations

§ Transformations between tables and graphs
§ Large number of graph algorithms

§ Straightforward to use
§ Workflow management and reproducibility

§ Provenance
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Data Sizes in Network Analytics 

§ Networks in Stanford Large Network Collection
§ http://snap.stanford.edu
§ Common benchmark Twitter2010 graph has 1.5B 

edges, requires 13.2GB RAM in SNAP
12

Number of Edges Number of Graphs
<0.1M 16

0.1M – 1M 25

1M – 10M 17
10M – 100M 7
100M – 1B 5

> 1B 1
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Network of all Published research

§ Microsoft Academic Graph
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Entity #Items Size

Papers 122.7M 32.4GB

Authors 123.1M 3.1GB

References 757.5M 14.4GB

Affiliations 325.4M 15.3GB

Keywords 176.8M 5.9GB

Total 1.9B 104.1GB



All Biomedical Research
Dataset #Items Raw Size
DisGeNet 30K 10MB

STRING 10M 1TB

OMIM 25K 100MB

CTD 55K 1.2GB

HPRD 30K 30MB

BioGRID 64K 100MB

DrugBank 7K 60MB

Disease Ontology 10K 5MB

Protein Ontology 200K 130MB

Mesh Hierarchy 30K 40MB

PubChem 90M 1GB

DGIdb 5K 30MB

Gene Ontology 45K 10MB

MSigDB 14K 70MB

Reactome 20K 100MB

GEO 1.7M 80GB

ICGC (66 cancer projects) 40M 1TB

GTEx 50M 100GB
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Total: 250M entities, 2.2TB raw data



Availability of Hardware
Could all these datasets fit into RAM of 
a single machine?
Single machine prices:

§ Server 1TB RAM, 80 cores, $25K
§ Server 6TB RAM, 144 cores, $200K
§ Server 12TB RAM, 288 cores, $400K

In my group we have 1TB RAM machines since 
2012 and just got a 12TB RAM machine 
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Dataset vs. RAM Sizes
§ KDNuggets survey since 2006 

surveys: “What is the largest dataset 
you analyzed/mined?”

§ Big RAM is eating big data:
§ Yearly increase of dataset sizes: 20%
§ Yearly increase of RAM sizes: 50%

16

Bottom line: Want to do graph 
analytics? Get a BIG machine!
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Trade-offs
Option 1 Option 2

Standard SQL database Custom representations

Separate systems for 
tables and graphs

Integrated system for 
tables and graphs

Single representation for 
tables and graphs

Separate table and graph
representations

Distributed system Single machine system

Disk-based structures In-memory structures

Jure Leskovec, Stanford 17
SNAP



Graph Analytics: SNAP
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Unstructured 
data

Relational 
tables

Specify
relationships 

Network 
representation
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Tabular
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Results

Integrate 
results

SNAP



Experts on StackOverflow
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Graph Construction in SNAP
§ SNAP (Python) code for executing 

finding the StackOverflow example
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RINGO: Interactive Graph Analytics on Big-Memory Machines Y. Perez, R. Sosic, 
A. Banerjee, R. Puttagunta, M. Raison, P. Shah, J. Leskovec. SIGMOD 2015.



SNAP Overview
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Table 
Objects

Graph 
Containers

Graph 
Methods

Graph, Table 
Conversions

Filters

SNAP: In-memory Graph Processing Engine

High-Level Language User Front-End
Provenance 

Script
Interface with Graph 
Processing Engine

Metadata 
(Provenance)

Secondary Storage
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Graph Construction
Input data must be manipulated and 
transformed into graphs
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Src Dst …
v1 v2 …
v2 v3 …
v3 v4 …
v1 v3 …
v1 v4 …

v1

v2
v3

v4

Table data 
structure

Graph data 
structure



Creating a Graph in SNAP
Four ways to create a graph:
Nodes connected based on

(1) Pairwise node similarity
(2) Temporal order of nodes
(3) Grouping and aggregation of nodes
(4) The data already contains edges as 
source and destination pairs
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Creating Graphs in SNAP (1)
Similarity-based: In a forum, connect 
users that post to similar topics

§ Distance metrics
§ Euclidean, Haversine, Jaccard distance

§ Connect similar nodes
§ SimJoin, connect if data points are closer 

than some threshold
§ How to get around quadratic complexity

– Locality Sensitive Hashing
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Creating Graphs in SNAP (2)
Sequence-based: In a Web log, 
connect pages in an order clicked by 
the users (click-trail)

§ Connect a node with its K successors
§ Events selected per user, ordered by 

timestamps
§ NextK, connect K successors
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Creating Graphs in SNAP (3)
§ Aggregation: Measure the activity 

level of different user groups
§ Edge creation

§ Partition users to groups
§ Identify interactions within each group
§ Compute a score for each group based on 

interactions
§ Treat groups as super-nodes in a graph
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Graphs and Methods

§ SNAP supports several graph types
§ Directed, Undirected, Multigraph

§ >200 graph algorithms
§ Any algorithm works on any container

Jure Leskovec, Stanford 27

graphs networks

generation manipulation analytics

Graph containers

Graph methods



SNAP Implementation
§ High-level front end

§ Python module
§ Uses SWIG for C++ interface 

§ High-performance graph engine
§ C++ based on SNAP

§ Multi-core support
§ OpenMP to parallelize loops
§ Fast, concurrent hash table, vector 

operations
Jure Leskovec, Stanford 28



Graphs in SNAP
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Experiments: Datasets
Dataset LiveJournal Twitter2010
Nodes 4.8M 42M
Edges 69M 1.5B

Text Size (disk) 1.1GB 26.2GB

Graph Size 
(RAM) 0.7GB 13.2GB

Table Size 
(RAM) 1.1GB 23.5GB
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Benchmarks, One Computer
Algorithm

Graph
PageRank
LiveJournal

PageRank
Twitter2010

Triangles
LiveJournal

Triangles
Twitter2010

Giraph 45.6s 439.3s N/A N/A
GraphX 56.0s - 67.6s -

GraphChi 54.0s 595.3s 66.5s -

PowerGraph 27.5s 251.7s 5.4s 706.8s

SNAP 2.6s 72.0s 13.7s 284.1s

Jure Leskovec, Stanford 31

Hardware: 4x Intel CPU, 64 cores, 1TB RAM, $35K 



Published Benchmarks
System Hosts CPUs

host Host Configuration Time

GraphChi 1 4 8x core AMD, 64GB RAM 158s

TurboGraph 1 1 6x core Intel, 12GB RAM 30s

Spark 50 2 97s

GraphX 16 1 8X core Intel, 68GB RAM 15s

PowerGraph 64 2 8x hyper Intel, 23GB RAM 3.6s

SNAP 1 4 20x hyper Intel, 1TB RAM 6.0s
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Twitter2010, one iteration of PageRank



SNAP: Sequential Algorithms

Algorithm Runtime

3-core 31.0s

Single source
shortest path 7.4s

Strongly connected
components 18.0s

Jure Leskovec, Stanford 33

LiveJournal, 1 core



SNAP: Sequential Algorithms

Jure Leskovec, Stanford 34

§ Benchmarks on the citation graph: 
nodes 50M, edges 757M

Algorithm Time (s) Implementation

In-degree 14 1 core

Out-degree 8 1 core

PageRank 115 64 cores

Triangles 107 64 cores

WCC 1,716 1 core

K-core 2,325 1 core



SNAP: Tables and Graphs

Dataset LiveJournal Twitter2010
Table to 
graph

8.5s
13.0 MEdges/s

81.0s
18.0 MEdges/s

Graph to 
table

1.5s
46.0 MEdges/s

29.2s
50.4 MEdges/s

35

Hardware: 4x Intel CPU, 80 cores, 1TB RAM, $35K 
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SNAP: Table Operations

Dataset LiveJournal Twitter2010

Select <0.1s
575.0 MRows/s

1.6s
917.7 MRows/s

Join 0.6s
109.5 MRows/s

4.2s
348.8 MRows/s

Load graph 5.2s 76.6s
Save graph 3.5s 69.0s

36Jure Leskovec, Stanford

Hardware: 4x Intel CPU, 80 cores, 1TB RAM, $35K 
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Multimodal Networks: 
A network of networks

Jure Leskovec, Stanford



Multimodal Networks

Network of networks
Jure Leskovec, Stanford 38

Mode

Cross-mode links

In-mode links
Node



Why multimodal networks?
§ Can encode additional semantic 

structure than a “simple” graph

§ Many naturally occurring graphs are 
multimodal networks
§ Gene-drug-disease networks
§ Social networks, 
§ Academic citation graphs

Jure Leskovec, Stanford 39



Multimodal Network Example
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Challenges 
Multimoral network requirements:
§ Fast processing

§ Efficient traversal of nodes and edges

§ Dynamic structure
§ Quickly add/remove nodes and edges

§ Create subgraphs, dynamic graphs, …

§ Tradeoff
§ High performance, fixed structure
§ Highly flexible structure, low performance

Jure Leskovec, Stanford 41



Piggyback on a Graph
Why can’t we just piggyback extra 
information onto a regular graph?

§ Want to ensure that per-mode 
information is easily accessible as a unit

§ Want more fine-grained control as to 
where certain vertex and edge 
information resides

§ Want indexes that allow for easy 
random access

Jure Leskovec, Stanford 42



Piggyback mode information
Benchmark multimodal graph:
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Nodes in modes 0 to 9 are fully 
connected to each other

Each node in 
modes 0 to 9 is 
connected to 10 
of the nodes in 
mode 10

• Modes 0 to 9 have 10K nodes 
each and 100M edges each

• Mode 10 has X nodes
• Each node in modes 0 to 9 is 

connected to all nodes in mode 10
X controls randomness of redundant edges

(while the output size is fixed)

Mode 0

Mode 10

Mode 9



Experiment
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How to be faster?
§ Remember: Everything is in memory 

so don’t need to worry about disk
§ Desirable properties:

§ Stay in cache as much as possible as 
memory accesses are expensive in 
comparison
§ I.e., we want good memory locality

§ Cheap index lookups that allow us to 
avoid having to look at the entire data 
structure

Jure Leskovec, Stanford 45



Multimodal Networks

§ Idea 1: Represent the multimodal graph 
as a collection of bipartite graphs

§ Idea 2: Consolidate node hash tables
§ Idea 3: Consolidate adjacency lists

Jure Leskovec, Stanford 46



Idea 1: BGC
BGC (Bipartite Graph Collection): 
Collection of per-mode bipartite graphs

Jure Leskovec, Stanford 47

k(k+1)/2 bipartite 
graphs, each bipartite 
graph has its own 
node hash table

Nodes can be 
repeated 
across different 
graphs

Each node object in a 
node hash table maps 
to a list of in- and out-
neighbors



Idea 2: Hybrid
Hybrid: Collection of per-mode node 
hash tables along with individual per-
mode adjacency lists

Jure Leskovec, Stanford 48

k node hash tables

Each node object 
in a node hash 
table maps to k
lists of in- and out-
neighbors sorted 
by node-id

Nodes only 
appear in a 
single node 
hash table



Idea 3: MNCA
MNCA (Multi-node hash table, 
consolidated adjacency lists): Per-mode 
node hash tables + big adjacency list

Jure Leskovec, Stanford 49

k node hash tables

Nodes 
only 
appear in 
a single 
node hash 
table

Each node object in 
a node hash table 
maps to a 
consolidated list of 
in- and out-
neighbors sorted by 
(mode-id, node-id)
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11 modes in total
§ 10k nodes in modes 0-9; edges between all nodes
§ 1M nodes in mode 10; edges between every node in 

mode 10 and all other nodes (total of 110B edges)



Tradeoffs by Workload
§ Workload type:

Jure Leskovec, Stanford 51

BGC Hybrid MNCA
Per-mode NodeId lookups

All-adjacent NodeId accesses

Per-mode adjacent NodeId accesses

Mode-pair SubGraph accesses

✔

✔

✔

✔



Tradeoffs by Graph Type
§ Graph type:

Jure Leskovec, Stanford 52

Sparser graphs

Denser graphs

Number of out-neighbors

BGC Hybrid MNCA

✔

✔

✔
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Latest Algorithms:
Feature Learning in 

Graphs

Jure Leskovec, Stanford

node2vec: Scalable Feature Learning for Networks
A. Grover, J. Leskovec. KDD 2016.



Machine Learning Lifecycle
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Raw 
Data

Structured 
Data

Learning 
Algorithm  Model

Downstream 
prediction task

Feature 
Engineering

Automatically 
learn the features

§ (Supervised) Machine Learning 
Lifecycle: This feature, that feature. 
Every single time!
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Feature Learning in Graphs
Goal: Learn features for a set of objects

Feature learning in graphs:
§ Given:
§ Learn a function:

§ Not task specific: Just given a graph, 
learn f. Can use the features for any
downstream task!

55Jure Leskovec, Stanford



Unsupervised Feature Learning
§ Intuition: Find a mapping of nodes to 

d-dimensions that preserves some 
sort of node similarity

§ Idea: Learn node embedding such 
that nearby nodes are close together

§ Given a node u, how do we define 
nearby nodes?
§ 𝑁" 𝑢 … neighbourhood of u obtained by 

sampling strategy S
56Jure Leskovec, Stanford



Unsupervised Feature Learning
§ Goal: Find embedding that predicts 

nearby nodes 𝑁" 𝑢 :

§ Make independence assumption:

is, similar words tend to appear in similar word neighborhoods.
Inspired by the Skip-gram model, recent research established

an analogy for networks by representing a network as a “docu-
ment” [28, 32]. The same way as a document is an ordered se-
quence of words, one could sample sequences of nodes from the
underlying network and turn a network into a ordered sequence of
nodes. However, there are many possible sampling strategies for
nodes, resulting in different learned feature representations. In fact,
as we shall show, there is no clear winning sampling strategy that
works across all networks and all prediction tasks. This is a major
shortcoming of prior work which fail to offer any flexibility in sam-
pling of nodes from a network [28, 32]. Our algorithm node2vec

overcomes this limitation since it is not tied to a particular sampling
strategy and provides parameters to tune the explored search space
(see Section 3).

Finally, for both node and edge based prediction tasks, there is a
body of recent work for supervised feature learning based on exist-
ing and novel graph-specific deep network architectures [17, 18, 19,
22, 36, 45]. These architectures directly minimize the loss function
for a downstream prediction task using several layers of non-linear
transformations which results in high accuracy, but at the cost of
scalability due to high training time requirements.

3. FEATURE LEARNING FRAMEWORK
We formulate feature learning in networks as a maximum like-

lihood optimization problem. Let G = (V,E) be a given net-
work. Our analysis is general and applies to any (un)directed,
(un)weighted network. Let f : V ! Rd be the mapping func-
tion from nodes to feature representaions we aim to learn for a
downstream prediction task. Here d is a parameter specifying the
number of dimensions of our feature representation. Equivalently,
f is a matrix of size |V | ⇥ d parameters. For every source node

u 2 V , we define N
S

(u) ⇢ V as a network neighborhood of node
u generated through a neighborhood sampling strategy S.

We proceed by extending the Skip-gram architecture to networks
[25, 28]. We seek to optimize the following objective function,
which predicts which nodes are members of u’s network neighbor-
hood N

S

(u) based on the learned node features f :

max
f

X

u2V

logPr(N
S

(u)|f(u)) (1)

In order to make the optimization problem tractable, we make
two standard assumptions:

• Conditional independence. We factorize the likelihood by as-
suming that the likelihood of observing a neighborhood node
is independent of observing any other neighborhood node
given the feature representation of the source.

Pr(N
S

(u)|f(u)) =
Y

n

i

2N

S

(u)

Pr(n
i

|f(u))

• Symmetry in feature space. A source node and neighbor-
hood node have a symmetric effect over each other in fea-
ture space. Accordingly, we model the conditional likeli-
hood of every source-neighborhood node pair as a softmax
unit parametrized by a dot product of their features.

Pr(n
i

|f(u)) = exp(f(n
i

) · f(u))P
v2V

exp(f(v) · f(u))

With the above assumptions, the objective in Eq. 1 simplifies to:

max
f

X

u2V

[� logZ
u

+

X

n

i

2N

S

(u)

f(n
i

) · f(u)] (2)

The per-node partition function, Z
u

=

P
v2V

exp(f(u) · f(v)),
is expensive to compute for large networks and we approximate it
using negative sampling [26]. We optimize Eq. 2 using stochastic
gradient descent over the model parameters defining the features f .

Feature learning methods based on the Skip-gram architecture
have been originally developed in the context of natural language [25].
Given a linear nature of text, the notion of a neighborhood can be
naturally defined using a sliding window over consecutive words.
Networks, however, are not linear, and thus a richer notion of a
neighborhood is needed. To resolve this issue, we propose a ran-
domized procedure that samples many different neighborhoods of
a given source node. The neighborhoods N

S

(u) are not restricted
to just immediate neighbors but can have vastly different structures
depending on the sampling strategy S. By exploring a rich set of
network neighborhoods, node2vec is able to learn state-of-the-art
node features.

3.1 Classic search strategies
We view the problem of sampling neighborhoods of a source

node as a form of local search. Figure 1 shows a graph, where
given a source node u we aim to generate (sample) its neighbor-
hood N

S

(u). Importantly, to be able to fairly compare different
sampling strategies S, we shall constrain the size of the neighbor-
hood set N

S

to k nodes and then sample multiple sets for a single
node u. Generally, there are two extreme sampling strategies for
generating neighborhood set(s) N

S

of k nodes:
• Breadth-first Sampling (BFS) The neighborhood N

S

is re-
stricted to nodes which are immediate neighbors of the source.
For example, in Fig. 1 for k = 3, BFS samples s

1

, s
2

, s
3

.
• Depth-first Sampling (DFS) The neighborhood consists of

nodes sequentially sampled at increasing distances from the
source node. In Fig. 1, DFS samples s

4

, s
5

, s
6

.
The breadth-first and depth-first sampling represent extreme sce-

narios in terms of the search space they explore leading to interest-
ing implications on the learned representations.

In particular, prediction tasks on nodes in networks often shuttle
between two kinds of similarities: structural equivalence and ho-
mophily [13]. Under the homophily hypothesis [7, 42] nodes that
are highly interconnected and belong to similar network clusters
or communities tend to share features and thus should be embed-
ded closely together (e.g., nodes s

1

and u in Fig. 1 belong to the
same network community). In contrast, under the structural equiv-
alence [11, 40] nodes that have similar structural roles in networks
tend to share features and thus should be embedded closely together
(e.g., nodes u and s

6

in Fig. 1 act as hubs of their corresponding
communities). Importantly, unlike homophily, structural equiva-
lence does not emphasize connectivity; nodes could be far apart in
the network and still have the same structural role. In real-world,
these equivalence notions are not exclusive; networks commonly
exhibit both behaviors where properties of some nodes exhibit ho-
mophily while others reflect structural equivalence.

We observe that BFS and DFS sampling strategies play a key role
in producing representations that reflect either of the equivalences.
In particular, the neighborhoods sampled by the BFS lead to em-
beddings that correspond to structural equivalence. Intuitively, we
note that in order to ascertain structural equivalence, it is often suffi-
cient to characterize the local neighborhoods accurately. For exam-
ple, structural equivalence based on network roles such as bridges
and hubs can be inferred just by observing the immediate neigh-
borhoods of each node. By restricting search to just 1-hop nodes,
the BFS is able to achieve this characterization and obtain a refined
micro-view of the neighborhood of every source. In BFS, nodes in
the sampled neighborhoods tend to repeat many times. This is also

is, similar words tend to appear in similar word neighborhoods.
Inspired by the Skip-gram model, recent research established

an analogy for networks by representing a network as a “docu-
ment” [28, 32]. The same way as a document is an ordered se-
quence of words, one could sample sequences of nodes from the
underlying network and turn a network into a ordered sequence of
nodes. However, there are many possible sampling strategies for
nodes, resulting in different learned feature representations. In fact,
as we shall show, there is no clear winning sampling strategy that
works across all networks and all prediction tasks. This is a major
shortcoming of prior work which fail to offer any flexibility in sam-
pling of nodes from a network [28, 32]. Our algorithm node2vec

overcomes this limitation since it is not tied to a particular sampling
strategy and provides parameters to tune the explored search space
(see Section 3).

Finally, for both node and edge based prediction tasks, there is a
body of recent work for supervised feature learning based on exist-
ing and novel graph-specific deep network architectures [17, 18, 19,
22, 36, 45]. These architectures directly minimize the loss function
for a downstream prediction task using several layers of non-linear
transformations which results in high accuracy, but at the cost of
scalability due to high training time requirements.

3. FEATURE LEARNING FRAMEWORK
We formulate feature learning in networks as a maximum like-

lihood optimization problem. Let G = (V,E) be a given net-
work. Our analysis is general and applies to any (un)directed,
(un)weighted network. Let f : V ! Rd be the mapping func-
tion from nodes to feature representaions we aim to learn for a
downstream prediction task. Here d is a parameter specifying the
number of dimensions of our feature representation. Equivalently,
f is a matrix of size |V | ⇥ d parameters. For every source node

u 2 V , we define N
S

(u) ⇢ V as a network neighborhood of node
u generated through a neighborhood sampling strategy S.

We proceed by extending the Skip-gram architecture to networks
[25, 28]. We seek to optimize the following objective function,
which predicts which nodes are members of u’s network neighbor-
hood N

S

(u) based on the learned node features f :

max
f

X

u2V

logPr(N
S

(u)|f(u)) (1)

In order to make the optimization problem tractable, we make
two standard assumptions:

• Conditional independence. We factorize the likelihood by as-
suming that the likelihood of observing a neighborhood node
is independent of observing any other neighborhood node
given the feature representation of the source.

Pr(N
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(u)|f(u)) =
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• Symmetry in feature space. A source node and neighbor-
hood node have a symmetric effect over each other in fea-
ture space. Accordingly, we model the conditional likeli-
hood of every source-neighborhood node pair as a softmax
unit parametrized by a dot product of their features.

Pr(n
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|f(u)) = exp(f(n
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) · f(u))P
v2V

exp(f(v) · f(u))

With the above assumptions, the objective in Eq. 1 simplifies to:
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The per-node partition function, Z
u

=

P
v2V

exp(f(u) · f(v)),
is expensive to compute for large networks and we approximate it
using negative sampling [26]. We optimize Eq. 2 using stochastic
gradient descent over the model parameters defining the features f .

Feature learning methods based on the Skip-gram architecture
have been originally developed in the context of natural language [25].
Given a linear nature of text, the notion of a neighborhood can be
naturally defined using a sliding window over consecutive words.
Networks, however, are not linear, and thus a richer notion of a
neighborhood is needed. To resolve this issue, we propose a ran-
domized procedure that samples many different neighborhoods of
a given source node. The neighborhoods N

S

(u) are not restricted
to just immediate neighbors but can have vastly different structures
depending on the sampling strategy S. By exploring a rich set of
network neighborhoods, node2vec is able to learn state-of-the-art
node features.

3.1 Classic search strategies
We view the problem of sampling neighborhoods of a source

node as a form of local search. Figure 1 shows a graph, where
given a source node u we aim to generate (sample) its neighbor-
hood N

S

(u). Importantly, to be able to fairly compare different
sampling strategies S, we shall constrain the size of the neighbor-
hood set N

S

to k nodes and then sample multiple sets for a single
node u. Generally, there are two extreme sampling strategies for
generating neighborhood set(s) N

S

of k nodes:
• Breadth-first Sampling (BFS) The neighborhood N

S

is re-
stricted to nodes which are immediate neighbors of the source.
For example, in Fig. 1 for k = 3, BFS samples s

1

, s
2

, s
3

.
• Depth-first Sampling (DFS) The neighborhood consists of

nodes sequentially sampled at increasing distances from the
source node. In Fig. 1, DFS samples s

4

, s
5

, s
6

.
The breadth-first and depth-first sampling represent extreme sce-

narios in terms of the search space they explore leading to interest-
ing implications on the learned representations.

In particular, prediction tasks on nodes in networks often shuttle
between two kinds of similarities: structural equivalence and ho-
mophily [13]. Under the homophily hypothesis [7, 42] nodes that
are highly interconnected and belong to similar network clusters
or communities tend to share features and thus should be embed-
ded closely together (e.g., nodes s

1

and u in Fig. 1 belong to the
same network community). In contrast, under the structural equiv-
alence [11, 40] nodes that have similar structural roles in networks
tend to share features and thus should be embedded closely together
(e.g., nodes u and s

6

in Fig. 1 act as hubs of their corresponding
communities). Importantly, unlike homophily, structural equiva-
lence does not emphasize connectivity; nodes could be far apart in
the network and still have the same structural role. In real-world,
these equivalence notions are not exclusive; networks commonly
exhibit both behaviors where properties of some nodes exhibit ho-
mophily while others reflect structural equivalence.

We observe that BFS and DFS sampling strategies play a key role
in producing representations that reflect either of the equivalences.
In particular, the neighborhoods sampled by the BFS lead to em-
beddings that correspond to structural equivalence. Intuitively, we
note that in order to ascertain structural equivalence, it is often suffi-
cient to characterize the local neighborhoods accurately. For exam-
ple, structural equivalence based on network roles such as bridges
and hubs can be inferred just by observing the immediate neigh-
borhoods of each node. By restricting search to just 1-hop nodes,
the BFS is able to achieve this characterization and obtain a refined
micro-view of the neighborhood of every source. In BFS, nodes in
the sampled neighborhoods tend to repeat many times. This is also

is, similar words tend to appear in similar word neighborhoods.
Inspired by the Skip-gram model, recent research established

an analogy for networks by representing a network as a “docu-
ment” [28, 32]. The same way as a document is an ordered se-
quence of words, one could sample sequences of nodes from the
underlying network and turn a network into a ordered sequence of
nodes. However, there are many possible sampling strategies for
nodes, resulting in different learned feature representations. In fact,
as we shall show, there is no clear winning sampling strategy that
works across all networks and all prediction tasks. This is a major
shortcoming of prior work which fail to offer any flexibility in sam-
pling of nodes from a network [28, 32]. Our algorithm node2vec

overcomes this limitation since it is not tied to a particular sampling
strategy and provides parameters to tune the explored search space
(see Section 3).
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transformations which results in high accuracy, but at the cost of
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3. FEATURE LEARNING FRAMEWORK
We formulate feature learning in networks as a maximum like-

lihood optimization problem. Let G = (V,E) be a given net-
work. Our analysis is general and applies to any (un)directed,
(un)weighted network. Let f : V ! Rd be the mapping func-
tion from nodes to feature representaions we aim to learn for a
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number of dimensions of our feature representation. Equivalently,
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u 2 V , we define N
S

(u) ⇢ V as a network neighborhood of node
u generated through a neighborhood sampling strategy S.
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which predicts which nodes are members of u’s network neighbor-
hood N

S
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is expensive to compute for large networks and we approximate it
using negative sampling [26]. We optimize Eq. 2 using stochastic
gradient descent over the model parameters defining the features f .

Feature learning methods based on the Skip-gram architecture
have been originally developed in the context of natural language [25].
Given a linear nature of text, the notion of a neighborhood can be
naturally defined using a sliding window over consecutive words.
Networks, however, are not linear, and thus a richer notion of a
neighborhood is needed. To resolve this issue, we propose a ran-
domized procedure that samples many different neighborhoods of
a given source node. The neighborhoods N

S

(u) are not restricted
to just immediate neighbors but can have vastly different structures
depending on the sampling strategy S. By exploring a rich set of
network neighborhoods, node2vec is able to learn state-of-the-art
node features.

3.1 Classic search strategies
We view the problem of sampling neighborhoods of a source

node as a form of local search. Figure 1 shows a graph, where
given a source node u we aim to generate (sample) its neighbor-
hood N

S

(u). Importantly, to be able to fairly compare different
sampling strategies S, we shall constrain the size of the neighbor-
hood set N

S

to k nodes and then sample multiple sets for a single
node u. Generally, there are two extreme sampling strategies for
generating neighborhood set(s) N

S

of k nodes:
• Breadth-first Sampling (BFS) The neighborhood N
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is re-
stricted to nodes which are immediate neighbors of the source.
For example, in Fig. 1 for k = 3, BFS samples s
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The breadth-first and depth-first sampling represent extreme sce-

narios in terms of the search space they explore leading to interest-
ing implications on the learned representations.

In particular, prediction tasks on nodes in networks often shuttle
between two kinds of similarities: structural equivalence and ho-
mophily [13]. Under the homophily hypothesis [7, 42] nodes that
are highly interconnected and belong to similar network clusters
or communities tend to share features and thus should be embed-
ded closely together (e.g., nodes s

1

and u in Fig. 1 belong to the
same network community). In contrast, under the structural equiv-
alence [11, 40] nodes that have similar structural roles in networks
tend to share features and thus should be embedded closely together
(e.g., nodes u and s

6

in Fig. 1 act as hubs of their corresponding
communities). Importantly, unlike homophily, structural equiva-
lence does not emphasize connectivity; nodes could be far apart in
the network and still have the same structural role. In real-world,
these equivalence notions are not exclusive; networks commonly
exhibit both behaviors where properties of some nodes exhibit ho-
mophily while others reflect structural equivalence.

We observe that BFS and DFS sampling strategies play a key role
in producing representations that reflect either of the equivalences.
In particular, the neighborhoods sampled by the BFS lead to em-
beddings that correspond to structural equivalence. Intuitively, we
note that in order to ascertain structural equivalence, it is often suffi-
cient to characterize the local neighborhoods accurately. For exam-
ple, structural equivalence based on network roles such as bridges
and hubs can be inferred just by observing the immediate neigh-
borhoods of each node. By restricting search to just 1-hop nodes,
the BFS is able to achieve this characterization and obtain a refined
micro-view of the neighborhood of every source. In BFS, nodes in
the sampled neighborhoods tend to repeat many times. This is also
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ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s

1

belong-
ing to the same community exhibit homophily, while the hub nodes
u and s

6

in the two communities are structurally equivalent. Real-
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Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec

parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F
1

scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F

1

scores
for comparing performance in Table 2 and the relative performance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).
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hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
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In the sampling phase, all benchmarks as well as node2vec pa-
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with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
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DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
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with a p-value of less than 0.01.The best in-out and return hyperpa-
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two tasks under consideration.
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In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
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responds to the graph induced by nodes for which we could
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Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
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All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
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determiners following nouns, punctuations preceeding nouns etc.
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important as it reduces the variance in characterizing the distribu-
tion of 1-hop nodes with respect the source node. However, a very
small portion of the graph is explored for any given k.

The opposite is true for DFS which can explore larger parts of
the network as it can move further away from the source node u
(with sample size k being fixed). In DFS, the sampled nodes more
accurately reflect a macro-view of the neighborhood which is es-
sential in inferring communities based on homophily. However,
the issue with DFS is that it is important to not only infer which
node-to-node dependencies exist in a network, but also to charac-
terize the exact nature of these dependencies. This is hard given
we have a constrain on the sample size and a large neighborhood
to explore, resulting in high variance. Secondly, moving to much
greater depths leads to complex dependencies since a sampled node
may be far from the source and potentially less representative.

3.2 node2vec
Building on the above observations, we design a flexible neigh-

borhood sampling strategy which allows us to smoothly interpo-
late between BFS- and DFS-type of neighborhood sampling. We
achieve this by developing a flexible biased random walk procedure
that can explore neighborhoods in a BFS as well as DFS fashion.

3.2.1 Random Walks

Formally, given a source node u, we simulate a random walk of
fixed length l. Let c

i

denote the ith node in the walk, starting with
c
0

= u. Nodes c
i

are generated by the following distribution:

P (c
i

= x | c
i�1

= v) =

(
⇡

vx

Z

if (v, x) 2 E

0 otherwise

where ⇡
vx

is the unnormalized transition probability between nodes
v and x, and Z is the normalizing constant. The simplest way
would be to transition based on the weights of the edges in the
graph (⇡

vx

= w
vx

). (In case of unweighted graphs w
vx

= 1.)
However, we want to adaptively change transition probabilities ⇡

vx

based on the network structure and this way guide the random walk
to explore different types of network neighborhoods.

Benefits of random walks. There are several benefits of random
walks over pure BFS/DFS sampling approaches. Random walks
are computationally efficient in terms of both space and time re-
quirements. The space complexity to store the immediate neigh-
bors of every source node in the graph is O(|E|). The other key ad-
vantage of random walks over classic search-based sampling strate-
gies is its time complexity. In particular, by imposing graph con-
nectivity in the sample generation process, random walks provide
a convenient mechanism to increase the effective sampling rate by
reusing samples across different source nodes. By simulating a
random walk of length l > k we can generate k samples for l � k
nodes at once due to the Markovian nature of the random walk.
Hence, our effective complexity is O(

l

k(l�k)

) per sample. For ex-
ample, in Figure 1 we sample a random walk {u, s

4

, s
5

, s
6

, s
8

, s
9

}
of length l = 6, which results in N

S

(u) = {s
4

, s
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, s
6

}, N
S

(s
4

) =
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, s
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} and N
S

(s
5

) = {s
6

, s
8

, s
9

}.

3.2.2 Search bias ↵
A naive way to bias our random walks would be to sample the

next node based on the edge weight w
vx

. However, this does
not allow us to account for the network structure and guide our
search procedure to explore different types of network neighbor-
hoods. Additionally, unlike BFS and DFS which are extreme sam-
pling paradigms suited for structural equivalence and homophily
respectively, our random walks should accommodate for the fact

t 

x2 x1 

v 

x3 

α=1 
α=1/q 

α=1/q 
α=1/p 

u 

s3 

s2 
s1 

s4 

s7 

s6 

s5 

BFS 

DFS 

v 

α=1 
α=1/q 

α=1/q 
α=1/p 

x2 

x3 t 

x1 

Figure 2: Illustration of our random walk procedure. The walk
just transitioned from t to v and is now evaluating its next step
out of node v. Edge labels indicate search biases ↵.

that these notions of equivalence are not competing or exclusive,
and that real-world networks commonly exhibit a mixture of both.

We define two parameters p and q which guide the random walk.
Consider that a random walk just traversed edge (t, v) to now reside
at node v (Figure 2). The walk now needs to decide on the next
step so it evaluates the transition probabilities ⇡

vx

on edges (v, x)
leading from v. We set the unnormalized transition probability to
⇡
vx

= ↵
pq

(t, x) · w
vx

, where

↵
pq

(t, x) =

8
><

>:

1

p

if d
tx

= 0

1 if d
tx

= 1

1

q

if d
tx

= 2

and d
tx

denotes the shortest path distance between nodes t and x.
Note that d

tx

must be one of {0, 1, 2}, and hence, the two parame-
ters are necessary and sufficient to guide the walk.

Intuitively, parameters p and q control how fast the walk explores
and leaves the neighborhood of starting node u. In particular, the
parameters allow our search procedure to (approximately) interpo-
late between BFS and DFS and thereby reflect an affinity for dif-
ferent notions of node equivalences.

Return parameter, p. Parameter p controls the likelihood of im-
mediately revisiting a node in the walk. Setting it to a high value
(> max(q, 1)) ensures that we are less likely to sample an already-
visited node in the following two steps (unless the next node in the
walk had no other neighbor). This is desirable for sampling strate-
gies as it encourages moderate exploration and avoids 2-hop redun-
dancy in sampling. On the other hand, if p is low (< min(q, 1)), it
would lead the walk to backtrack a step (Figure 2) and this would
keep the walk “local” as it would keep close to the starting node u.

In-out parameter, q. Parameter q allows the search to differentiate
between “inward” and “outward” nodes. Going back to Figure 2,
if q > 1, the random walk is biased towards nodes close to node t.
Such walks obtain a local view of the underlying graph with respect
to the start node in the walk, and approximate BFS behavior in the
sense that our samples comprise of nodes within a small locality.

In contrast, if q < 1, the walk is more inclined to visit nodes
which are further away from the node t. Such behavior is reflec-
tive of DFS which encourages outward exploration. However, an
essential difference here is that we achieve DFS-like exploration
within the random walk framework. Hence, the sampled nodes are
not at strictly increasing distances from a given source node u, but
in turn, we benefit from tractable preprocessing and superior sam-
pling efficiency of random walks.

3.2.3 The node2vec algorithm

The pseudocode for node2vec , is given in Algorithm 1. Starting
from every node u, we simulate r fixed length random walks sam-
pling based on the transition probabilities ⇡

vx

. Note that the tran-

The walk just traversed (𝑡, 𝑣) and aims to make a next step.
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Multilabel Classification

§ Spectral embedding
§ DeepWalk [B. Perozzi et al., KDD ‘14]
§ LINE [J. Tang et al.. WWW ‘15]

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec

parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F
1

scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F

1

scores
for comparing performance in Table 2 and the relative performance
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Incomplete Network Data (PPI)
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Conclusion
§ Big-memory machines are here:

§ 1TB RAM, 100 Cores ≈ a small cluster
§ No overheads of distributed systems
§ Easy to program

§ Most “useful” datasets fit in memory
§ Big-memory machines present a 

viable solution for analysis of all-but-
the-largest networks
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Graphs have to be Built

§ Graphs have to built from data
§ Processing of tables and graphs

66

Relational	tables Graphs	and	networks

graph	construction	
operations

graph	analytics
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Multimodal Networks
§ Graphs are more than wiring diagrams
§ Multimodal network: A network of 

Networks
§ Building scalable data structures
§ NUMA architectures 

provide interesting 
new tradeoffs
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Building Robust Systems
How to get robust performance always?
§ Ongoing/future work

§ Better characterize the optimal 
representation required given workload 
and graph type

§ Try to dynamically switch representations 
when nodes get sufficiently high degrees 
or particular queries become more 
common

§ Benchmark on real data and real queries
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