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Today: Three Things To Tell You

1. Nifty Reformulation of Conditions for Fast
Rates in Statistical Learning

— Tsybakov, Bernstein, Exp-Concavity,...
2. Do this via new concept: ESI

3. Precise Analogue of Bernstein Condition for
Fast Rates in Individual Sequence Setting

— ...and algorithm that achieves these rates!
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VC: Vapnik-Chervonenkis
(1974!) optimistic (realizability)
condition

TM: Tsybakov (2004) margin
condition (special case:
Massart Condition)

u-BC: Audibert, Bousquet
(2005), Bartlett, Mendelson
(2006) “Bernstein Condition”

« Does not require 0/1 or
absolute loss

 Does not require
Bayes act to be in
model



Decision Problem

A decision problem (DP) is defined as a tuple(P, ¢, F)
where

« P is the distribution of random quantity Z taking
values in Z

« the model F is a set of predictors f, and for each
J€F ¢y Z— Rindicates loss f makes on Z

- Example: squared error loss
Z =(X,Y)
f:X—=J)Y=R
((X)Y) = (Y — f(X))?



Decision Problem

A decision problem (DP) is defined as a tuple(P, ¢, F)
where

« P is the distribution of random quantity Z taking
values in Z

« the model F is a set of predictors f, and for each
feF ty: Z— Rindicates loss f makes on Z

« We assume throughout that the model contains a
risk minimizer f*, achieving

El[ly-] = infser E[fy]

- E[¢;] abbreviates Ezp[(;(Z)]



Bernstein Condition

« FixaDP(P,¢,F) with (for now) bounded loss

« DP satisfies the (C, a)-Bernstein condition if there
exists C > 0,a € [0,1], such that for all f € F

Efvy -] < C - (E[ryg+])"

where we set 7y« = £; — - and vy g = (ry,f+)?

« Trfis ‘regret of f relative to f*'.



Bernstein Condition

 FixaDP (P, ¢, F) with (for now) bounded loss

« DP satisfies the (C, a)-Bernstein condition if there
exists C > 0,a € [0,1], such that for all f € F

Efvy -] < C - (E[ryg+])"

where we set 7y« = £; — - and vy g = (ry,f+)?

« Generalizes Tsybakov condition: f* does not need
to be Bayes act, loss does not need to be 0/1



Bernstein Condition

 FixaDP (P, ¢, F) with (for now) bounded loss

« DP satisfies the (C, a)-Bernstein condition if there
exists C > 0,a € [0,1], such that for all f € F

Efvy -] < C - (E[ryg+])"

where we set 7y« = £; — - and vy g = (ry,f+)?

« Suppose data are i.i.d. and the (C, a)-Bernstein
condition holds. Then...



Under Bernstein(C, «)

« Empirical Risk minimization satisfies, with high prob*,

Birg,.. 1= 0 ((257) ™)

 a = 0: condition trivially satisfied, get minimax rate
O(1/VT)

 «a = 1: nice case (Massart condition), get ‘log-loss’
rate O(1/T)



Under Bernstein(C, «)

n —“Bayes” MAP satisfies, with high prob*,

_ o (=oex)\ 7=
by, -] =0 ((<2572)77)

This requires setting “learning rate” n in terms of «
and T!

a = 0: slow rate O(1/VT); a = 1: fast rate O(1/T)




GOAL: Sequential Bernstein

« 1n —"“Bayes” MAP satisfies, with high prob*,

B _logn(f7)\ 7=
E["“fw,f*]—O(( 7 ) )

GOAL: design ‘sequential Bernstein condition’ and
accompanying sequential prediction algorithm s.t.

1. cumulative regret always satisfies, for all f*, all
seguences o
T_l'RALij* :O((—log%r(f )) )

2. If condition holds, it also satisfies, with high prob*

T-1. Ryve,p« = O ((—logjzr(f*)) 2_0)




GOAL: Sequential Bernstein

GOAL: design ‘sequential Bernstein condition’ and
accompanying sequential prediction algorithm s.t.

1. cumulative regret always satisfies, for all f*, all
sequences

Ryra,p+ = O (T% - (— logw(f*))%)

2. If condition holds, it also satisfies, with high prob*

Rpr,p+ = O (T%:—g (= 10g7r(f*))ﬁ)



DREAM

DREAM: design ‘'sequential Bernstein condition” and
accompanying sequential prediction algorithm s.t.

1. cumulative regret always satisfies, for all f*, all
sequences

RALG,f* =0 (T% | (_ logﬂ-(f*))

2. If condition holds for given sequence, then
cumulative regret satisfies, for that sequence:

R, i+ = 0, (Téi—g . (_ 10gw(f*))ﬁ)

D=



GOAL: Sequential Bernstein

GOAL: design ‘sequential Bernstein condition’ s.t.
1. forall f*, all sequences

R, = O (T (—log(f*)?)
2. If condition holds, it also satisfies, with high prob*,

Rarg,p~ = 0O (Té:g ' (—10g7T(f*))2‘10‘)

Approach 1: define seq. Bernstein as standard Bernstein+i.i.d.
Even then none of the standard algorithms achieve this...
With one (?) exception!




Today: Three Things To Tell You

1. Nifty Reformulation of Fast Rate Conditions
In Statistical Learning

2. Do this via new concept: ESI

3. Precise Analogue of Bernstein Condition for
Fast Rates in Individual Sequence Setting

— ...and algorithm that achieves these rates!



Exponential Stochastic Inequality
(ESI)

» For any given n > 0 we write X <, € as
shorthand for

Ele"*] < en*

X <5 eimplies, via Jensen,
E[X] <e
« X <; eimplies, via Markov, for all A,

=1
P(X>e+A)<e 4



ESI-Example

« Hoeffding’'s Inequality: suppose that X has
support [—1,1], and mean 0. Then

X < EX]+ 2



ESI — More Properties

 Fori.id.rvs X, X, ..., X7 we have

T
X<Ge=) 1 Xy 5T e

* For arbitrary rvs X,Y we have

X<haiY <ib=X+Y <! ,a+b



Bernstein in ESI Terms

« Most general form of Bernstein condition: for some
nondecreasing function s : Rj — R :

Vf c F: E[’Uf’f*] < S(E[Tfjf*])



Bernstein in ESI Terms

Most general form of Bernstein condition: for some
nondecreasing function s : Rj — R :

Vf c F: E[’Uf,f*] < S(E[Tfjf*])

Van Erven et al. (2015) show this is equivalent to
having

for some nondecreasing function « : Rj — Ry with

u(xr) < (@)



U-Central Condition

 Van Erven et al. (2015) show Bernstein condition is
Is equivalent to the existence of increasing function
u: Ry — Ry such that for some f* € F :

VfeF,e>0: ff*—ﬁf u()

They term this the u-central condition



U-Central Condition

Van Erven et al. (2015) show Bernstein condition is
Is equivalent to the existence of increasing function
u: Ry — Ry such that for some f* € F :

VfeF,e>0: ff*—ﬁf u(e)

They term this the u-central condition

— can also be related to mixability, exp-concavity,
JRT-condition, condition for well-behavedness of
Bayesian inference under misspecification



U-Central Condition

 Van Erven et al. (2015) show Bernstein condition is

Is equivalent to the existence of increasing function
u: Ry — Ry such that for some f* € F :

VfeF,e>0: ff*—ﬁf u()

They term this the u-central condition

— can also be related to mixability, exp-concavity,
JRT-condition, condition for well-behavedness of
Bayesian inference under misspecification

— for unbounded losses, it becomes different (and
better!) than Bernstein condition — it is one-sided



Three Equivalent Notions for
Bounded Losses

U-central condition in terms of regret:
VfEf,EZO: _Tf,f* SZ(E)E

..... or equivalently (extending notation):

VieF,e>0: O<Z(€) g e+ €



Three Equivalent Notions for
Bounded Losses

* U-central condition in terms of regret: with n := u(e)
VfeF,e>0: Oﬁ;’;frf,f* +e€

« For bounded losses, this turns out to be equivalent
to: for some appropriately chosen C4, C5 with
Ne := Cru(e):

VieF,e>0: CQ'T]E'Uf’f* S:;G Tf fx T €



Three Equivalent Notions for
Bounded Losses

* U-central condition in terms of regret: with n := u(e)
VfeF,e>0: Og,’,';frf,f* +e€

« For bounded losses, this turns out to be equivalent
to: for some appropriately chosen C4, C5 with
Ne := Cru(e):

VieF,e>0: Cg-ne-vf’f* S:;e Tf fx T €

« More similar to original Bernstein condition.
However, condition is now in ‘exponential’ rather
than ‘expectation’ form



Today: Three Things To Tell You

1. Nifty Reformulation of Fast Rate
Conditions in Statistical Learning

2. Do this via new concept: ESI

3. Precise Analogue of Bernstein Condition for
Fast Rates in Individual Sequence Setting

— ...and algorithm that achieves these rates!



T-fold U-Central Condition

* Suppose that u-central condition holds (i.e. x / u(x) —
Bernstein holds) , and data are i.i.d.

Then by generic property of ESI, with n, = C; - u(e),
VieF,e>0: Co-ne- Vi g <. B +7T €
where Ry g =, (£pe — Ly 1)

Vi =Sy Uy — Ly 1)



T-fold U-Central Condition

« Under u-central cond. and iid data, with n, = C; - u(e):
VieF,e>0: Co-ne-Vig <p Ryppe+T-¢€
but also for every learning algorithm ALG : [J;5o Lt = F
Co Ne * Vara, g+ <, Rare, g« + T - €

With Rype pe = Y omy (Caret = Ly=1)
T
Visa, s = 2oy (baret — Ly 1)



Cumulative U-Central Condition

« Under u-central cond. and iid data, with n, = C; - u(e):
VieF,e>0: Cone- Vg <; Ryppe +7T €
but also for every learning algorithm ALG : [J;5o Lt = F
Co Ne * Vara, g+ <, Rare, g« + T - €

This condition may of course also hold for non-i.i.d.
data. It Is the condition we need, so we term it the

cumulative u-central condition



Hedge with Oracle Learning Rate

« Hedge with learning rate n achieves regret bound,
forall f* e F

RHEDGE(n),f* < Co - VALG,f* -+ —10g7;r(f )

« We assume cumulative u-central condition for some
u. For simplicity assume u(x) < z” ; then:

V€207n201'655 OQ'n'VALG,f"‘ é;;RALG,f*—I_T'E

and even for some other constant
VEZO,n:Ci'Eﬁi CO'n'VALG,f* S;; %RALG,f*_l_%'E



Hedge with Oracle Learning Rate

- Combining we get Ve > 0,7 = O/ - €’

% —1 T *
3 Ruevarn) fo <y T2+ =5

« We can set € (or egv. n) as we like. Best possible
bound achieved if we make sure all terms are of
same order, i.e. we set attime T,

T. 6/2 — _logﬂ-(f*)
N

e
+ and then ny = (_log”(f ))1+5 and

T

L

_B
RHEDGE(nT)f* nT/QC T'1+p '(_logﬂ-(f )) o




Squint without Oracle Learning
Rate!

* Hedge achieves ESI- (!)-bound
£ 1
Rygpce(n), £+ §;’;/2 C-T7 - (—logm(f*))T+5

...but needs to know f*,f and T to set learning rate!

* Squint (Koolen and Van Erven '15)
« achieves same bound without knowing these!

« Gets bound with f = 0 automatically for individual
seqguences

 What about Adanormalhedge? (Luo & Shapire ‘15)



Dessert: Easy Data Rather than
Distributions

We are working with algorithms such as

Hedge and Squint, designed for individual,
nonstochastic sequences

Yet condition Is stochastic

Does there exist nonstochastic analogue?
Answer IS yes:



Non-Stochastic Inequality

Suppose u-cumulative central condition holds for some
u. Using Martingale theory one shows that this also
iImplies the following:

 fix a countable, otherwise arbitrary set .4 of learning
algorithms.

* Fix a decreasing seguence ¢4, €,, ... and set
corresponding n; = u(e;),n, = u(ey), ...

« Then we have with probability 1: for every aLG € A
there exists C such that

VI'>0: Cy-nr - Vipa, f* < Rare g+ +1 - (loglogT') - er +C



Individual Sequence Condition

Hence we define:

(we only give special case with u(x) = x# here)

An individual sequence satisfies the u-fast rate
condition relative to countable set of learning
algoritms A and constants{C,, : ALG € A} if there
exists f* such that for all T > 0, for allaLG € A, with

B 1
—log w(f*)\ T+P Coea( £\ TTF
o = (o) er = (Floxgten)

we have

Co-nr - Vare, £ <Barq,f~ +1 - (10g logT) - er + Care



Conclusion

« |f a sequence satisfies u-fast rate condition, then
Hedge (with oracle) and Squint (without oracle) both
achieve desired regret bound

« We've removed all stochastics!

« Similar idea used by Gyorgy and Szepesvari in
this workshop!

« Notion implies a (very close!) analogy to Martin-Lof
randomness

Van Erven, G. Mehta, Reid, Williamson
Fast Rates in Statistical and Online Learning.
JMLR Special Issue in Memory of A. Chervonenkis, Oct. 2015




lets zeggen over: L* bound, unbounded losses,
mixabllity, JRT,exp-concavity, ....

Tell Csaba, Peter B, Philippe

\eta \leq u(\epsilon), maar ook met \eta =
u(\epsilon)
Star means...



