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Today: Three Things To Tell You

1. Nifty Reformulation of Conditions for Fast 

Rates in Statistical Learning

– Tsybakov, Bernstein, Exp-Concavity,...

2. Do this via new concept: ESI

3. Precise Analogue of Bernstein Condition for 

Fast Rates in Individual Sequence Setting

– ...and algorithm that achieves these rates!
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VC: Vapnik-Chervonenkis 

(1974!) optimistic (realizability) 

condition

TM: Tsybakov (2004) margin 

condition (special case: 

Massart Condition)

𝒖-BC: Audibert, Bousquet 

(2005), Bartlett, Mendelson 

(2006) “Bernstein Condition”

• Does not require 0/1 or 

absolute loss

• Does not require   

Bayes act to be in 

model



Decision Problem

• A decision problem (DP) is defined as a tuple                

where 

• 𝑃 is the distribution of random quantity 𝑍 taking 

values in     ,

• the model is a set of predictors 𝑓, and for each            

, indicates loss 𝑓 makes on 𝑍

• Example: squared error loss
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• A decision problem (DP) is defined as a tuple                

where 

• 𝑃 is the distribution of random quantity 𝑍 taking 

values in     ,

• the model is a set of predictors 𝑓, and for each            

, indicates loss 𝑓 makes on 𝑍

• We assume throughout that the model contains a 

risk minimizer 𝑓∗, achieving 

• abbreviates



Bernstein Condition

• Fix a DP              with (for now) bounded loss

• DP satisfies the 𝐶, 𝛼 -Bernstein condition if there 

exists 𝐶 > 0, 𝛼 ∈ 0,1 , such that for all 
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• is ‘regret of 𝑓 relative to 𝑓∗’.      
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Bernstein Condition

• Fix a DP              with (for now) bounded loss

• DP satisfies the 𝐶, 𝛼 -Bernstein condition if there 

exists 𝐶 > 0, 𝛼 ∈ 0,1 , such that for all 

where we set                          and     

• Suppose data are i.i.d. and the 𝐶, 𝛼 -Bernstein 

condition holds. Then...



Under Bernstein(𝑪, 𝜶)

• Empirical Risk minimization satisfies, with high prob*,

• 𝛼 = 0: condition trivially satisfied, get minimax rate

• 𝛼 = 1: nice case (Massart condition), get ‘log-loss’ 

rate



Under Bernstein(𝑪, 𝜶)

• 𝜼 −“Bayes” MAP satisfies, with high prob*,

• This requires setting “learning rate” 𝜂 in terms of 𝛼
and 𝑇! 

• 𝛼 = 0: slow rate ; 𝛼 = 1: fast rate 



GOAL: Sequential Bernstein

• 𝜂 −“Bayes” MAP satisfies, with high prob*,

• GOAL: design ‘sequential Bernstein condition’ and 

accompanying sequential prediction algorithm s.t.

1. cumulative regret always satisfies, for all 𝑓∗, all 

sequences 

2. if condition holds, it also satisfies, with high prob*
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DREAM

• DREAM: design ‘sequential Bernstein condition’ and 

accompanying sequential prediction algorithm s.t.

1. cumulative regret always satisfies, for all 𝑓∗, all 

sequences 

2. if condition holds for given sequence, then 

cumulative regret satisfies, for that sequence:



GOAL: Sequential Bernstein

• GOAL: design ‘sequential Bernstein condition’ s.t.

1. for all 𝑓∗, all sequences 

2. if condition holds, it also satisfies, with high prob*,

Approach 1: define seq. Bernstein as standard Bernstein+i.i.d.

Even then none of the standard algorithms achieve this...

With one (?) exception!



Today: Three Things To Tell You

1. Nifty Reformulation of Fast Rate Conditions 

in Statistical Learning

2. Do this via new concept: ESI

3. Precise Analogue of Bernstein Condition for 

Fast Rates in Individual Sequence Setting

– ...and algorithm that achieves these rates!



Exponential Stochastic Inequality 

(ESI)

• For any given 𝜂 > 0 we write 𝑿 ≤𝜼
∗ 𝝐 as 

shorthand for 

• 𝑋 ≤𝜂
∗ 𝜖 implies, via Jensen, 

• 𝑋 ≤𝜂
∗ 𝜖 implies, via Markov, for all 𝐴, 



ESI-Example

• Hoeffding’s Inequality: suppose that 𝑋 has 

support [−1,1], and mean 0. Then 



ESI – More Properties

• For i.i.d. rvs 𝑋, 𝑋1, … , 𝑋𝑇 we have

• For arbitrary rvs 𝑋, 𝑌 we have



Bernstein in ESI Terms

• Most general form of Bernstein condition: for some 

nondecreasing function                  :
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nondecreasing function                     :

• Van Erven et al. (2015) show this is equivalent to 
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for some nondecreasing function                      with 
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U-Central Condition

• Van Erven et al. (2015) show Bernstein condition is 

is equivalent to the existence of increasing function                       

such that for some            :   

They term this the 𝒖-central condition

– can also be related to mixability, exp-concavity, 

JRT-condition, condition for well-behavedness of 

Bayesian inference under misspecification

– for unbounded losses, it becomes different (and 

better!) than Bernstein condition – it is one-sided



Three Equivalent Notions for 

Bounded Losses

• U-central condition in terms of regret:

.....or equivalently (extending notation): 
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Three Equivalent Notions for 

Bounded Losses

• U-central condition in terms of regret: with 

• For bounded losses, this turns out to be equivalent 

to: for some appropriately chosen           with          

: 

• More similar to original Bernstein condition. 

However, condition is now in ‘exponential’ rather 

than ‘expectation’ form
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• Suppose that 𝑢-central condition holds (i.e. 𝑥 / 𝑢(𝑥) –

Bernstein holds) , and data are i.i.d. 

Then by generic property of ESI, with 𝜂𝜖 = 𝐶1 ⋅ 𝑢(𝜖),

where 

T-fold U-Central Condition



• Under 𝑢-central cond. and iid data, with 𝜂𝜖 = 𝐶1 ⋅ 𝑢 𝜖 : 

but also for every learning algorithm

with 

T-fold U-Central Condition



• Under 𝑢-central cond. and iid data, with 𝜂𝜖 = 𝐶1 ⋅ 𝑢 𝜖 : 

but also for every learning algorithm

This condition may of course also hold for non-i.i.d.     

data. It is the condition we need, so we term it the 

cumulative u-central condition

Cumulative U-Central Condition



Hedge with Oracle Learning Rate

• Hedge with learning rate 𝜂 achieves regret bound, 

for all 

• We assume cumulative 𝑢-central condition for some 

𝑢. For simplicity assume                  ; then:

and even for some other constant  



Hedge with Oracle Learning Rate

• Combining we get 

• We can set 𝜖 (or eqv. 𝜂) as we like. Best possible 

bound achieved if we make sure all terms are of 

same order, i.e. we set at time 𝑇,

• and then                                      and  



Squint without Oracle Learning 

Rate!

• Hedge achieves ESI- (!)-bound

...but needs to know 𝑓∗, 𝛽 and 𝑇 to set learning rate!

• Squint (Koolen and Van Erven ’15) 

• achieves same bound without knowing these!

• Gets bound with 𝛽 = 0 automatically for individual 

sequences 

• What about Adanormalhedge? (Luo & Shapire ‘15)



Dessert: Easy Data Rather than 

Distributions

• We are working with algorithms such as 

Hedge and Squint, designed for individual, 

nonstochastic sequences

• Yet condition is stochastic

• Does there exist nonstochastic analogue? 

• Answer is yes: 



Non-Stochastic Inequality

Suppose 𝑢-cumulative central condition holds for some 

𝑢. Using Martingale theory one shows that this also 

implies the following: 

• fix a countable, otherwise arbitrary set    of learning 

algorithms. 

• Fix a decreasing sequence 𝜖1, 𝜖2, … and set 

corresponding 𝜂1 = 𝑢 𝜖1 , 𝜂2 = 𝑢 𝜖2 , …

• Then we have with probability 1: for every                

there exists 𝐶 such that 



Individual Sequence Condition

Hence we define:

(we only give special case with 𝑢 𝑥 = 𝑥𝛽 here)

An individual sequence satisfies the 𝑢-fast rate 

condition relative to countable set of learning 

algoritms     and constants                    if there 

exists 𝑓∗ such that for all 𝑇 > 0, for all              , with     

we have 



Conclusion

• If a sequence satisfies u-fast rate condition, then 

Hedge (with oracle) and Squint (without oracle) both 

achieve desired regret bound 

• We’ve removed all stochastics!

• Similar idea used by György and Szepesvári in 

this workshop!

• Notion implies a (very close!) analogy to Martin-Löf 

randomness

Van Erven, G. Mehta, Reid, Williamson

Fast Rates in Statistical and Online Learning.

JMLR Special Issue in Memory of A. Chervonenkis, Oct. 2015



Iets zeggen over: L* bound, unbounded losses, 

mixability, JRT,exp-concavity, .... 

Tell Csaba, Peter B, Philippe

\eta \leq u(\epsilon), maar ook met \eta = 

u(\epsilon)

Star means...


