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Aim of the Workshop

» Minimax analysis gives robust algorithms
* But In common these are overly

- Large gap between performance predicted by theory and observed in
practice

I » This workshop:

- Bring together easy cases in different learning settings

- New algorithms: robust to worst case, but
automatically adapt to easy cases to learn faster
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Learning Settings  Easy Cases

(non-exhaustive list)

e Margin condition (classification),

Standard statistical learning Bernstein condition
Active learning  Data fit low-complexity model
e Sparsity

e Curvature of the loss:
strong convexity, exp-concavity, mixability

« Small variance:
2nd-order bounds, IID losses + gap, small
losses, ...

* Many “good” experts

Online learning

Bandits e Stochastic = IID losses + gap

Clustering e K-Means “works”
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Outline

- statistical learning
- online learning
- bandits
* How to exploit easy data
- statistical learning
- online learning

» The price of adaptivity




Statistical Learning
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small risk R(f) X ir [1OSS(X, Y, f)]

compared to minimizer / of risk in model F
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Easy Data In Classification

For worst-case P learning is slow:

R(f) _R(fY =0 (\/complexity(f))

n

. [Tsybakov, 2004]

| - common case: P(Y|X) not too close to %
- then learning Is much faster, up to

R(F)— R(f*) = O <comp1exity(F))

n
N e .




The Margin Condition
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Large Margin Reduces Variance

- Important source of excess risk R(f) — R(f*)is
variance In excess loss:

V(f.£7) = E (loss(X, Y. ) ~ loss(X. Y. £))

° =)
V(f, %) <c(R(f) — R(f*)"

« Smaller excess risk ==) smaller variance

N — e .




Large Margin Reduces Variance

- Important source of excess risk R(f) — R(f*)is
variance in excess loss:

V(f.£7) = E (loss(X, Y. ) ~ loss(X. Y. £))

 Margin condition &= Bernstein condition:
V(f, [*) < e(R(f) = R(f))"

« Smaller excess risk ==) smaller variance
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Online Learning
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| small cumulative loss L(f Zloss X, Y, 1)

compared to minimizer /" of cumulatlve
loss in model F
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Easy Data in Online Learning

» Curved losses: cier -
than /

strongly convex,
exp-concave, mixable

linear loss
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Easy Data in Online Learning

» Curved losses: \\
./

strongly convex,
exp-concave, mixable

easier
than

/

/

linear loss

- Small empirical variance in excess losses:

T
1 . RY:
V = 7 ; (loss(Xt,Yt, fi) —loss( Xy, Ye, f ))

Implied by:
- small losses ( L*-bounds)
- I.I.d. losses + gap




1 Easy Data in Online Learning

» Curved losses: \
,/

strongly convex,
exp-concave, mixable

| Implied by:
- small losses ( L*-bounds)
- I.I.d. losses + gap
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linear loss

- Small empirical variance in excess losses:

T
1 . RY:
V= T t:Zl (1OSS(Xt7 Yt? ft) o IOSS(Xta Yza f ))

— Bernstein condition! <=ssm Grunwald




Bandit Online Learning

014, €2 i, £3,i T T i
D1 D2 p3 pr
: /treatments with losses ¢; 1, ..., 0 i
> Only own (randomized) choice i; ~ p;

T

small cumulative loss Zét,z't
t=1

compared to best fixed arm @~
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Easy Data for Bandits

» Stochastic bandits (easier):

- Losses for arms are independent, identically distributed (i.i.d.)

- Positive gap between expected performance of best arm and all
others

» Adversarial bandits (harder):

- Losses can be anything, even chosen to make learning as
difficult as possible




Easy Data for Bandits

» Stochastic bandits

- Losses for arms are independent, identically distributed (i.i.d.)

- Positive gap between expected performance of best arm and all
others

» Adversarial bandits

- Losses can be anything, even chosen to make learning as
difficult as possible

» Can a single algorithm adapt to:
— ’) <:
- small losses + adversarial? Neu

- small variance in general + adversarial?
\__ — e e — —




Outline

- Easy data

- statistical learning
- online learning
- bandits

 How to exploit easy data

- statistical learning

- online learning
» The price of adaptivity




Adaptive Statistical Learning

We consider exploiting k- cases:
V(f, f*) < e(R(f) = R(f*))" rel0,1]

Method: penalized ERM f minimizes

- 1
loss(X;. Y, £) + Mn ——
; 0ss( f) + —

(for simplicity: prior won countable model F)
How to tune \?

N — e -




Adaptive Statistical Learning

1—k

» Knowing x, penalized ERM with » = (1 )

LR
X In 2-K
MﬂRUﬂO(< f>> )
o method through holdout estimate

| » More sophisticated adaptive methods:

- Slope heuristic [Birgé, Massart]
- Lepski's method
- Safe Bayes [Grinwald]
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Adaptive Online Learning:

Probabilistic Estimators
 Penalized ERM:

mleoss X, Yi, f)+ An ——

1=1
- Allow probability distributions p(f):

min I
p p(f)

> loss(X;,Y;, f)
| 1=1

1
m(f)

1
+ EKL(Z?HW)




Adaptive Online Learning:
Probabilistic Estimators
» Penalized ERM:

1
mleoss X, Yi, f)+ An ——

o (/)
- Allow probability distributions p(f):

- 1
min [E loss(X;, Y;, + — KL(p||m
in_ I Z ( /) ; (p[|m)

» Solution: exponential weights

7_‘_(]0)6—77 > loss(X;,Ys, f)

p(f) =

normalization




Adaptive Online Learning:
Probabillistic Estimators

» Penalized ERM\-
—

\

 Allow probabillity distributi

min
P p(f)

z”: loss( X,
Li=1

Yi, f)

Remark: Obtain other methods like gradient descent by:
« changing KL to other regularizers +
* more general sets for p

ON/

» Solution: exponential weights

p(f) =

—

1
+ EKL(Z?HW)

ﬂ_(f)e—n > loss(X;,Y5, f)

normalization




Adaptive Online Learning

6_77 Zgzl IOSSS(f)ﬂ'(f)

Pt+1(f) —

normalization

For convex losses, play mean: f, = Zpt(f)f
Standard tuning for the worst case /

N~ 1/VT
Gives worst-case regret bound

O(T)

Can we do better if we get - data?




Adaptive Online Learning

» Turns out can indeed exploit k-Bernstein data
with correctly tuned 7. In fact wantn = 1/,

 But cannot do holdout

* Then how to tune eta?

- One approach: tune 7 in terms of
on regret that includes some

- Next slide: learn empirically best learning
rate 7) for data at hand




Sq U | nt [Koolen and Van Erven 2015]
- Exponential weights: 77 needs external tuning

pt—|—1(f) X W(f)e—n 22:1 losss (f) X 7-‘-(]l’)enl-:it(f)

exponential In regret r.(f) = loss,(f;) — losss(f).
s=1




Sq u | nt [Koolen and Van Erven 2015]
* Exponential weights: 71 needs external tuning

pt+1(f) X W(f)e_” > losss(f) X W(f)e’)?Rt(f)

exponential In regret r.(f) = loss,(f;) — losss(f).
s=1

* Squint: best 1) for the data

1/2 .
pra1(f) w(f)/ et (F)=n"Ve(£) qp)
0

t

with variance penalty v;(f) =) (10888( Fs) — lossg( f))Q.

s=1

\_—_— e — e —




Squint
» Philosophy: best 7 for the data

1/2 .
pra1(f) x w(f)/ et (F)=n"Ve(£) qp)
0

» Important for current overview:
- Optimal rate In cases
» Further advantages beyond stochastic case:

- Fast rates on data
- Second-order and quantile adaptivity




Outline

- Easy data

- statistical learning
- online learning
- bandits

* How to exploit easy data

- statistical learning
- online learning

* The price of adaptivity
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Price of adaptivity

» Sefttings where adaptivity is cheap

- Statistical learning: holdout, etc.

_ _ _ _ Griinwald,
— Online learning (full inf.): Squint (FLUS':(\;\:?

« Settings where adaptivity subtle/unknown

- Bandits (lID stochastic / adversarial)

« Adaptivity to both settings affordable

» Can adapt to small losses ( [.*) but general intermediate
case very very tricky (Neu).

- Active learning (Singh)

- Online boosting: (Kale)
* Newly introduced setting (ICML best paper)

« Seems some cost for adaptivity

- Clustering: (Ben-David)




Schedule

* Invited speakers

» Spotlights + posters:

- Online learning, online convex optimization
— Clustering

- Statistical learning

- Non-i.1.d. data

- Bandits

e Panel discussion




Easy Land:
great
unknowns |

Statistical
Learning
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