

Learning Faster from Easy Data II

Wouter Koolen

CWI Centrum Wiskunde & Informatica

Tim van Erven

Aim of the Workshop

- Minimax analysis gives robust algorithms
- But in common easy cases these are overly conservative
 - Large gap between performance predicted by theory and observed in practice
- This workshop:
 - Bring together easy cases in different learning settings
 - New algorithms: robust to worst case, but automatically adapt to easy cases to learn faster

Learning Settings

Easy Cases (non-exhaustive list)

Standard statistical learning Active learning	 Margin condition (classification), Bernstein condition Data fit low-complexity model Sparsity
Online learning	 Curvature of the loss: strong convexity, exp-concavity, mixability Small variance: 2nd-order bounds, IID losses + gap, small losses, Many "good" experts
Bandits	 Stochastic = IID losses + gap
Clustering	 K-Means "works"

Outline

- Easy data
 - statistical learning
 - online learning
 - bandits
- How to exploit easy data
 - statistical learning
 - online learning
- The price of adaptivity

Statistical Learning

compared to minimizer f^* of risk in model \mathcal{F}

Easy Data in Classification

For **worst-case** *P* learning is slow:

$$R(\hat{f}) - R(f^*) = O\left(\sqrt{\frac{\text{complexity}(\mathcal{F})}{n}}\right)$$

Margin condition: [Tsybakov, 2004]

- common case: P(Y|X) not too close to $\frac{1}{2}$
- then learning is much faster, up to

$$R(\hat{f}) - R(f^*) = O\left(\frac{\operatorname{complexity}(\mathcal{F})}{n}\right)$$

The Margin Condition

easy

 $\alpha = \infty$

moderate $\alpha = 1$

hard $\alpha = 0$

$$P\Big(|P(Y|X) - \frac{1}{2}| \le t\Big) \le ct^{\alpha}$$

Large Margin Reduces Variance

• Important source of excess risk $R(\hat{f}) - R(f^*)$ is variance in excess loss:

$$V(\hat{f}, f^*) = \mathbb{E}\left(\log(X, Y, \hat{f}) - \log(X, Y, f^*)\right)^2$$

Margin condition Bernstein condition:

$$V(\hat{f}, f^*) \le c \left(R(\hat{f}) - R(f^*) \right)^{\kappa}$$

Smaller excess risk smaller variance

Large Margin Reduces Variance

• Important source of excess risk $R(\hat{f}) - R(f^*)$ is variance in excess loss:

$$V(\hat{f}, f^*) = \mathbb{E}\left(\log(X, Y, \hat{f}) - \log(X, Y, f^*)\right)^2$$

Margin condition Bernstein condition:

$$V(\hat{f}, f^*) \le c \left(R(\hat{f}) - R(f^*) \right)^{\kappa}$$

Smaller excess risk smaller variance

small cumulative loss $L(\hat{f}) = \sum_{t=1}^{T} \operatorname{loss}(X_t, Y_t, \hat{f}_t)$

compared to minimizer f^* of cumulative loss in model \mathcal{F}

Easy Data in Online Learning

Curved losses:

strongly convex, exp-concave, mixable

linear loss

Easy Data in Online Learning

Curved losses:

strongly convex, exp-concave, mixable

linear loss

• Small empirical variance in excess losses: $V = \frac{1}{T} \sum_{t=1}^{T} \left(loss(X_t, Y_t, \hat{f}_t) - loss(X_t, Y_t, f^*) \right)^2$

Implied by:

- small losses (L^* -bounds)
- i.i.d. losses + gap

Easy Data in Online Learning

Curved losses:

strongly convex, exp-concave, mixable

linear loss

• Small empirical variance in excess losses: $V = \frac{1}{T} \sum_{t=1}^{T} \left(loss(X_t, Y_t, \hat{f}_t) - loss(X_t, Y_t, f^*) \right)^2$

Implied by:

- small losses (L^* -bounds)
- i.i.d. losses + gap

- K arms/treatments with losses $\ell_{t,1}, \ldots, \ell_{t,K}$
- Only observe own (randomized) choice $i_t \sim \hat{p}_t$

small cumulative loss
$$\sum_{t=1}^{T} \ell_{t,i_t}$$

compared to best fixed arm *i*

Easy Data for Bandits

- Stochastic bandits (easier):
 - Losses for arms are **independent**, **identically distributed** (i.i.d.)
 - Positive gap between expected performance of best arm and all others
- Adversarial bandits (harder):
 - Losses can be anything, even chosen to make learning as difficult as possible

Easy Data for Bandits

- Stochastic bandits (easier):
 - Losses for arms are **independent**, **identically distributed** (i.i.d.)
 - Positive gap between expected performance of best arm and all others

Neu

- Adversarial bandits (harder):
 - Losses can be anything, even chosen to make learning as difficult as possible
- Can a single algorithm adapt to:
 - iid+gap + adversarial? Auer
 - small losses + adversarial?

- small variance in general + adversarial?

Outline

- Easy data
 - statistical learning
 - online learning
 - bandits
- How to exploit easy data
 - statistical learning
 - online learning
- The price of adaptivity

Adaptive Statistical Learning

We consider exploiting κ -Bernstein cases:

$$V(\hat{f}, f^*) \le c \left(R(\hat{f}) - R(f^*) \right)^{\kappa} \quad \kappa \in [0, 1]$$

Method: **penalized ERM** \hat{f} **minimizes**

$$\sum_{i=1}^{n} \operatorname{loss}(X_i, Y_i, f) + \frac{\lambda}{\pi(f)} \ln \frac{1}{\pi(f)}$$

(for simplicity: prior π on countable model \mathcal{F}) How to tune λ ?

Adaptive Statistical Learning

- Knowing κ , penalized ERM with $\lambda = \left(\frac{n}{\log \frac{1}{\pi(f^*)}}\right)^{\frac{1-\kappa}{2-\kappa}}$ $R(\hat{f}) - R(f^*) = O\left(\left(\frac{\ln \frac{1}{\pi(f^*)}}{n}\right)^{\frac{1}{2-\kappa}}\right)$
- Adaptive method through holdout estimate
- More sophisticated adaptive methods:
 - Slope heuristic [Birgé, Massart]
 - Lepski's method
 - Safe Bayes [Grünwald]

Adaptive Online Learning: Probabilistic Estimators

• Penalized ERM:

$$\min_{f} \sum_{i=1}^{n} \operatorname{loss}(X_i, Y_i, f) + \frac{\lambda}{\pi(f)} \ln \frac{1}{\pi(f)}$$

• Allow probability distributions p(f):

$$\min_{p} \mathbb{E}_{p(f)} \left[\sum_{i=1}^{n} \operatorname{loss}(X_i, Y_i, f) \right] + \frac{1}{\eta} \operatorname{KL}(p \| \pi)$$

Adaptive Online Learning: Probabilistic Estimators

• Penalized ERM:

$$\min_{f} \sum_{i=1}^{n} \operatorname{loss}(X_i, Y_i, f) + \frac{\lambda}{\pi(f)} \ln \frac{1}{\pi(f)}$$

• Allow probability distributions p(f):

$$\min_{p} \mathbb{E}_{p(f)} \left[\sum_{i=1}^{n} \operatorname{loss}(X_i, Y_i, f) \right] + \frac{1}{\eta} \operatorname{KL}(p \| \pi)$$

Solution: exponential weights

$$p(f) = \frac{\pi(f)e^{-\eta \sum_{i=1}^{n} \operatorname{loss}(X_i, Y_i, f)}}{\operatorname{normalization}}$$

Solution: exponential weights

$$p(f) = \frac{\pi(f)e^{-\eta \sum_{i=1}^{n} \operatorname{loss}(X_i, Y_i, f)}}{\operatorname{normalization}}$$

Adaptive Online Learning

$$p_{t+1}(f) = \frac{e^{-\eta \sum_{s=1}^{t} \text{loss}_s(f)} \pi(f)}{\text{normalization}}$$

- For convex losses, play mean: $\hat{f}_t = \sum p_t(f) f$
- Standard tuning for the worst case

$$\eta \approx 1/\sqrt{T}$$

f

Gives worst-case regret bound

Can we do better if we get κ-Bernstein data?

Adaptive Online Learning

- Turns out can indeed exploit κ -Bernstein data with correctly tuned η . In fact want $\eta = 1/\lambda$.
- But cannot do holdout
- Then how to tune eta?
 - One approach: tune η in terms of upper bound on regret that includes some measure of variance
 - Next slide: learn empirically best learning rate η for data at hand

Squint [Koolen and Van Erven 2015]

• Exponential weights: η needs external tuning

$$p_{t+1}(f) \propto \pi(f) e^{-\eta \sum_{s=1}^{t} \log_s(f)} \propto \pi(f) e^{\eta R_t(f)}$$

exponential in regret $R_t(f) = \sum_{s=1}^{t} \log_s(\hat{f}_s) - \log_s(f)$.

Squint [Koolen and Van Erven 2015]

• Exponential weights: η needs external tuning

$$p_{t+1}(f) \propto \pi(f) e^{-\eta \sum_{s=1}^{t} \log_s(f)} \propto \pi(f) e^{\eta R_t(f)}$$

exponential in regret $R_t(f) = \sum_{s=1}^{t} \log_s(\hat{f}_s) - \log_s(f)$.

• Squint: learn best η for the data

$$p_{t+1}(f) \propto \pi(f) \int_0^{1/2} e^{\eta R_t(f) - \eta^2 V_t(f)} \mathrm{d}\eta$$

with variance penalty $V_t(f) = \sum_{s=1}^t \left(\mathrm{loss}_s(\hat{f}_s) - \mathrm{loss}_s(f) \right)^2$.

Squint

• Philosophy: learn best η for the data

$$p_{t+1}(f) \propto \pi(f) \int_0^{1/2} e^{\eta R_t(f) - \eta^2 V_t(f)} \mathrm{d}\eta$$

- Important for current overview:
 - Optimal rate in **Bernstein** cases
- Further advantages beyond stochastic case:
 - Fast rates on **sub-adversarial** data
 - Second-order and quantile adaptivity

Outline

- Easy data
 - statistical learning
 - online learning
 - bandits
- How to exploit easy data
 - statistical learning
 - online learning
- The price of adaptivity

Price of adaptivity

- Settings where adaptivity is cheap
 - Statistical learning: holdout, etc.
 - Online learning (full inf.): Squint (Grünwald, Foster)
- Settings where adaptivity subtle/unknown
 - Bandits (IID stochastic / adversarial)
 - Adaptivity to both settings affordable (Auer).
 - Can adapt to small losses (L^*) but general intermediate case very very tricky (Neu).
 - Active learning (Singh)
 - Online boosting: (Kale)
 - Newly introduced setting (ICML best paper)
 - Seems some cost for adaptivity
 - Clustering: (Ben-David)

. . .

Schedule

- Invited speakers
- Spotlights + posters:
 - Online learning, online convex optimization
 - Clustering
 - Statistical learning
 - Non-i.i.d. data
 - Bandits
- Panel discussion

