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Aim of the Workshop

● Minimax analysis gives robust algorithms

● But in common easy cases these are overly 
conservative

– Large gap between performance predicted by theory and observed in 
practice

● This workshop:

– Bring together easy cases in different learning settings 

– New algorithms: robust to worst case, but 
automatically adapt to easy cases to learn faster



  

Learning Settings Easy Cases
(non-exhaustive list)

Standard statistical learning
Active learning

● Margin condition (classification),
Bernstein condition

● Data fit low-complexity model
● Sparsity

Online learning

● Curvature of the loss:
strong convexity, exp-concavity, mixability

● Small variance:
2nd-order bounds, IID losses + gap, small 
losses, ...

● Many “good” experts

Bandits ● Stochastic = IID losses + gap

Clustering ● K-Means “works”
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Outline

● Easy data
– statistical learning

– online learning

– bandits

● How to exploit easy data
– statistical learning

– online learning

● The price of adaptivity



  

Statistical Learning

small risk

compared to minimizer     of risk in model



  

Easy Data in Classification

For worst-case     learning is slow:

Margin condition:

– common case:              not too close to   

– then learning is much faster, up to

[Tsybakov, 2004]



  

The Margin Condition

easy moderate hard



  

Large Margin Reduces Variance

● Important source of excess risk                    is 
variance in excess loss:

● Margin condition        Bernstein condition:

● Smaller excess risk        smaller variance    



  

Large Margin Reduces Variance

● Important source of excess risk                    is 
variance in excess loss:

● Margin condition        Bernstein condition:

● Smaller excess risk        smaller variance    



  

Online Learning

small cumulative loss

compared to minimizer     of cumulative 
loss in model



  

Easy Data in Online Learning
● Curved losses:

strongly convex,
exp-concave, mixable linear loss

easier 
than



  

Easy Data in Online Learning
● Curved losses:

● Small empirical variance in excess losses:

Implied by:
– small losses (     -bounds)

– i.i.d. losses + gap

strongly convex,
exp-concave, mixable linear loss

easier 
than



  

Easy Data in Online Learning
● Curved losses:

● Small empirical variance in excess losses:

Implied by:
– small losses (     -bounds)

– i.i.d. losses + gap

– Bernstein condition!

strongly convex,
exp-concave, mixable linear loss

easier 
than

Grünwald



  

Bandit Online Learning

small cumulative loss

compared to best fixed arm

● K arms/treatments with losses
● Only observe own (randomized) choice     



  

Easy Data for Bandits

● Stochastic bandits (easier):
– Losses for arms are independent, identically distributed (i.i.d.)

– Positive gap between expected performance of best arm and all 
others

● Adversarial bandits (harder):
– Losses can be anything, even chosen to make learning as 

difficult as possible



  

Easy Data for Bandits

● Stochastic bandits (easier):
– Losses for arms are independent, identically distributed (i.i.d.)

– Positive gap between expected performance of best arm and all 
others

● Adversarial bandits (harder):
– Losses can be anything, even chosen to make learning as 

difficult as possible

● Can a single algorithm adapt to:
– iid+gap + adversarial?

– small losses + adversarial?

– small variance in general + adversarial?

Auer
Neu



  

Outline

● Easy data
– statistical learning

– online learning

– bandits

● How to exploit easy data
– statistical learning

– online learning

● The price of adaptivity



  

We consider exploiting   -Bernstein cases:

Method: penalized ERM    minimizes

(for simplicity: prior   on countable model    )

How to tune   ?

Adaptive Statistical Learning



  

Adaptive Statistical Learning

● Knowing   , penalized ERM with                 :   

● Adaptive method through holdout estimate
● More sophisticated adaptive methods:

– Slope heuristic

– Lepski's method

– Safe Bayes

[Birgé, Massart]

[Grünwald]



  

Adaptive Online Learning: 
Probabilistic Estimators

● Penalized ERM:

● Allow probability distributions        :



  

Adaptive Online Learning: 
Probabilistic Estimators

● Penalized ERM:

● Allow probability distributions        :

● Solution: exponential weights



  

Adaptive Online Learning: 
Probabilistic Estimators

● Penalized ERM:

● Allow probability distributions        :

● Solution: exponential weights

Remark: Obtain other methods like gradient descent by:
● changing KL to other regularizers +
● more general sets for p



  

Adaptive Online Learning

● For convex losses, play mean: 
● Standard tuning for the worst case

● Gives worst-case regret bound

● Can we do better if we get   -Bernstein data?



  

Adaptive Online Learning

● Turns out can indeed exploit   -Bernstein data 
with correctly tuned   . In fact want             .

● But cannot do holdout
● Then how to tune eta?

– One approach: tune    in terms of upper 
bound on regret that includes some 
measure of variance

– Next slide: learn empirically best learning 
rate    for data at hand



  

Squint
● Exponential weights:    needs external tuning

exponential in regret                                      .

[Koolen and Van Erven 2015]



  

Squint
● Exponential weights:    needs external tuning

exponential in regret                                      .

● Squint: learn best    for the data

with variance penalty                                         .

[Koolen and Van Erven 2015]



  

Squint
● Philosophy: learn best    for the data

● Important for current overview: 
– Optimal rate in Bernstein cases

● Further advantages beyond stochastic case: 
– Fast rates on sub-adversarial data
– Second-order and quantile adaptivity



  

Outline

● Easy data
– statistical learning

– online learning

– bandits

● How to exploit easy data
– statistical learning

– online learning

● The price of adaptivity



  

Price of adaptivity
● Settings where adaptivity is cheap

– Statistical learning: holdout, etc. 

– Online learning (full inf.): Squint

● Settings where adaptivity subtle/unknown

– Bandits (IID stochastic / adversarial)
● Adaptivity to both settings affordable (Auer).
● Can adapt to small losses (     ) but general intermediate 

case very very tricky (Neu).

– Active learning (Singh)

– Online boosting: (Kale) 
● Newly introduced setting (ICML best paper)
● Seems some cost for adaptivity

– Clustering: (Ben-David)
– ...

(Grünwald,
  Foster)



  

Schedule

● Invited speakers
● Spotlights + posters:

– Online learning, online convex optimization

– Clustering

– Statistical learning

– Non-i.i.d. data

– Bandits

● Panel discussion



  

Easy Land:
   great

           unknowns

Statistical 
Learning

Bandits

Online 
Learning

margin 
condition

Clustering

?
Active Learning

Non-Stationarity
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