
Deterministic Independent Component Analysis (ICA)

Ruitong Huang András György Csaba Szepesvári

University of Alberta; Imperial College London

December 10, 2015

December 10, 2015 1 / 11



Outline

1 Introduction
What is ICA, really?

2 Deterministic ICA

3 Conclusions

December 10, 2015 2 / 11



What is Independent Component Analysis (ICA)?

Introduction What is ICA, really? December 10, 2015 3 / 11



BLIND SOURCE SEPARATION 5

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

6

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

Fig. 1.2 The observed signals that are assumed to be mixtures of some underlying source
signals.

1.2.2 Source separation based on independence

The question now is: How can we estimate the coefficients in (1.4)? We want
to obtain a general method that works in many different circumstances, and in fact
provides one answer to the very general problem that we started with: finding a
good representation of multivariate data. Therefore, we use very general statistical
properties. All we observe is the signals and , and we want to find a matrix

so that the representation is given by the original source signals , and .
A surprisingly simple solution to the problem can be found by considering just

the statistical independence of the signals. In fact, if the signals are not gaussian, it
is enough to determine the coefficients , so that the signals

(1.5)

are statistically independent. If the signals , and are independent, then they
are equal to the original signals , and . (They could be multiplied by some
scalar constants, though, but this has little significance.)

Using just this information on the statistical independence, we can in fact estimate
the coefficient matrix for the signals in Fig. 1.2. What we obtain are the source
signals in Fig. 1.3. (These signals were estimated by the FastICA algorithm that
we shall meet in several chapters of this book.) We see that from a data set that
seemed to be just noise, we were able to estimate the original source signals, using
an algorithm that used the information on the independence only. These estimated
signals are indeed equal to those that were used in creating the mixtures in Fig. 1.2
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Fig. 1.3 The estimates of the original source signals, estimated using only the observed
mixture signals in Fig. 1.2. The original signals were found very accurately.

(the original signals are not shown, but they really are virtually identical to what the
algorithm found). Thus, in the source separation problem, the original signals were
the “independent components” of the data set.

1.3 INDEPENDENT COMPONENT ANALYSIS

1.3.1 Definition

We have now seen that the problem of blind source separation boils down to finding
a linear representation in which the components are statistically independent. In
practical situations, we cannot in general find a representation where the components
are really independent, but we can at least find components that are as independent
as possible.

This leads us to the following definition of ICA, which will be considered
in more detail in Chapter 7. Given a set of observations of random variables

, where is the time or sample index, assume that they are
generated as a linear mixture of independent components:

...
...

(1.6)

where is some unknown matrix. Independent component analysis now consists of
estimating both the matrix and the , when we only observe the . Note
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algorithm found). Thus, in the source separation problem, the original signals were
the “independent components” of the data set.

1.3 INDEPENDENT COMPONENT ANALYSIS

1.3.1 Definition

We have now seen that the problem of blind source separation boils down to finding
a linear representation in which the components are statistically independent. In
practical situations, we cannot in general find a representation where the components
are really independent, but we can at least find components that are as independent
as possible.

This leads us to the following definition of ICA, which will be considered
in more detail in Chapter 7. Given a set of observations of random variables

, where is the time or sample index, assume that they are
generated as a linear mixture of independent components:

...
...

(1.6)

where is some unknown matrix. Independent component analysis now consists of
estimating both the matrix and the , when we only observe the . Note

We were able to estimate the original source signals, using an
algorithm that used the information on the independence only.
[. . . ] This leads us to the following definition of ICA [. . . ] Given
a set of observations of random variables (x1(t), x2(t), . . . , xd(t)),
where t is the time or sample index, assume that they are
generated as a linear mixture of independent components:

x1(t)
x2(t)
...

xd(t)

 = A


s1(t)
s2(t)
...

sd(t)

 ,

where A is some unknown matrix.
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Good?
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Independence? 6 INTRODUCTION
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(the original signals are not shown, but they really are virtually identical to what the
algorithm found). Thus, in the source separation problem, the original signals were
the “independent components” of the data set.

1.3 INDEPENDENT COMPONENT ANALYSIS

1.3.1 Definition

We have now seen that the problem of blind source separation boils down to finding
a linear representation in which the components are statistically independent. In
practical situations, we cannot in general find a representation where the components
are really independent, but we can at least find components that are as independent
as possible.

This leads us to the following definition of ICA, which will be considered
in more detail in Chapter 7. Given a set of observations of random variables

, where is the time or sample index, assume that they are
generated as a linear mixture of independent components:

...
...

(1.6)

where is some unknown matrix. Independent component analysis now consists of
estimating both the matrix and the , when we only observe the . Note

Is s1(t) independent of s2(t)? Sure!
Any two numbers are independent of each other! All deterministic
signal sources are fine then? What if s2(t) = 2s1(t)?
Should we be worried about temporal dependencies? No? What if
s1(t) = s1(t + 1) = . . . ?
Can we redefine ICA in a more meaningful way?
Let’s go beyond statistics!
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How to go beyond statistical analysis?

1 Perform a deterministic analysis of the algorithm, reducing the
problem to perturbation analysis

2 Perform statistical analysis on the size of perturbations when necessary
or desired

Let [T ] = {1, . . . ,T}. Sources: s : [T ]→ [−C ,C ]d .
Let ν(s) be the empirical distribution induced by s; for B ⊂ [−C ,C ]d ,

ν(s)(B) = 1
T |{t ∈ [T ] : s(τ) ∈ B}|.

Measure of independence: D4(ν(s), µ), D(d ,d)
4 (ν(As,ε));

Measure of Gaussianness: κ(ν(ε));
Measure of Zero-Mean: N(ν(ε)), N(ν(s))
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Result

There exists a randomized algorithm such that for any A ∈ Rd×d , and
x , s, ε : [T ]→ Rd satisfying x(t) = As(t) + ε(t), the algorithm returns Â
such that:

The computational complexity is O(d3T );
With high probability,

d(Â,A) ≤ inf
µ∈Π0

C(µ)min
(
D4(ν(s), µ) + κ(ν(ε)) + D

(d ,d)
4 (ν(As,ε))

+ N(ν(ε)) + N(ν(s)),Θ(µ)
)
,

Here,C(µ) and Θ(µ) are problem dependent, polynomial in the
parameters.
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Conclusions

♦ Independent Component Analysis without probabilities!
♦ Deterministic analysis: Cleaner, more general, should do it more often!

Limits?
♦ New method: DICA. Universal, strong guarantees.
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