A Two-Stage Approach for Learning a Sparse Model with Sharp Excess Risk Analysis

Zhe Li*, Tianbao Yang*,Lijun Zhang[‡], Rong Jin[†]

*The University of Iowa, ${}^{\natural}$ Nanjing University, † Alibaba Group

December 10, 2015

Problem

- Let $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$ denote an input and output pair
- Let w_* be an optimal model that minimizes the expected error

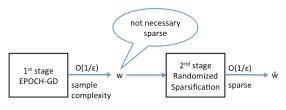
$$w_* = \arg\min_{||w||_1 \le B} \frac{1}{2} \mathrm{E}_{\mathcal{P}}[(w^T x - y)^2]$$

- Key Problem: w_* is not necessarily sparse
- The goal: to learn a sparse model w to achieve small excess risk

$$ER(w, w_*) = \mathbb{E}_{\mathcal{P}}[(w^T x - y)^2] - \mathbb{E}_{\mathcal{P}}[(w_*^T x - y)^2] \le \epsilon$$

The challenges

- $L = \mathbb{E}_{\mathcal{P}}[(w^T x y)^2]$ is not necessarily strongly convex
 - Stochastic optimization: $O(1/\epsilon^2)$ sample complexity and no sparsity guarantee
 - Empirical risk minimization + ℓ_1 penalty: $O(1/\epsilon^2)$ sample complexity and no sparsity guarantee
- Challenges:
 - Can we reduce sample complexity (e.g. $O(1/\epsilon)$)?
 - Can we also have a guarantee on sparsity of model?
- Our solution:



The first stage

- Our first stage algorithm is motivated by EPOCH-GD algorithm [Hazan, Kale 2011], which is on strongly convex setting.
- How to avoid strongly convex assumption?
 - $L(w) = E_{\mathcal{P}}[(w^Tx y)^2] = h(Aw) + b^Tw + c$
 - $h(\cdot)$: a strongly convex function
 - The optimal solution set is a polyhedron
 - By Hoffmans' bound we have

$$2(L(w)-L_*) \geq \frac{1}{\kappa}||w-w^+||_2^2$$

where w^+ is the closest solution to w in the optimal solution set

[1] Elad Hazan, Satyen Kale, Beyond the regret minimization barrier: optimal algorithm for stochastic strongly-convex optimization

The second stage

• Our second stage algorithm:

Randomized Sparsification

For k = 1, ..., K

- Sample $i_k \in [d]$ according to $Pr(i_k = j) = p_j$
- Compute $[\widetilde{\mathbf{w}}_k]_{i_k} = [\widetilde{\mathbf{w}}_{k-1}]_{i_k} + \frac{\widehat{w}_{i_k}}{p_{i_k}}$

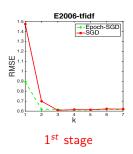
End For

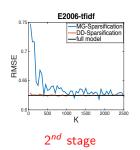
$$p_j = \frac{\sqrt{\hat{w}_j^2 E[x_j^2]}}{\sum_{j=1}^d \sqrt{\hat{w}_j^2 E[x_j^2]}} \text{ instead of } p_j = \frac{|\hat{w}_j|}{||\hat{w}||_1} \text{ [Shalve-Shwartz et al., 2010]}$$

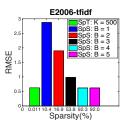
• Reduced constant in $O(1/\epsilon)$ for sparsity

[2] shalve-shwartz, Srebro, Zhang, Trading accuracy for sparsity in optimization problems with sparsity constraints

Experimental Results







RMSE vs Sparsity