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Abstract

We consider the setting of prediction with expert advice with an additional as-
sumption that each expert generates its losses i.i.d. according to some distribution.
We first identify a class of “admissable” strategies, which we call permutation in-
variant, and show that every strategy outside this class will perform not better than
some permutation invariant strategy. We then show that when the losses are bi-
nary, a simple Follow the Leader (FL) algorithm is the minimax strategy for this
game, where minimaxity is simultaneously achieved for the expected regret, the
expected redundancy, and the excess risk. Furthermore, FL has also the small-
est regret, redundancy, and excess risk over all permutation invariant prediction
strategies, simultaneously for all distributions over binary losses. When the losses
are continuous in [0, 1], FL remains minimax only when an additional trick called
“loss binarization” is applied.

1 Introduction

In the game of prediction with expert advice [1, 2], the algorithm sequentially decides on one of
K experts to follow, and suffers loss associated with the chosen expert. The difference between
the algorithm’s cumulative loss and the cumulative loss of the best expert is called regret. The goal
is to minimize the regret in the worst case over all possible loss sequences. An algorithm which
achieves this goal (i.e., minimizes the worst-case regret) is called minimax. While there is no known
solution to this problem in the general setting, it is possible to derive minimax algorithms for some
special variants of this game [1, 2, 3, 4]. Interestingly, all these algorithms share a similar strategy
of playing against a maximin adversary which assigns losses uniformly at random. They often have
the equlization property: all data sequences lead to the same value of the regret. While this property
makes them robust against the worst-case sequence, it also makes them over-conservative, prevent-
ing them from exploiting the case, when the actual data are “easy”. There are various algorithm
which combine almost optimal worst-case performance with good performance on easy sequences
[5, 6, 7, 8, 9]; these algorithms, however, are not motivated from the minimax principle.

In this paper, we drop the analysis of worst-case performance entirely, and explore the minimax prin-
ciple in a more constrained setting, in which the adversary is assumed to be stochastic. In particular,
we associate with each expert k a fixed distribution Pk over loss values, and assume the observed
losses of expert k are generated independently from Pk. We believe this setting might be practically
useful, and that it is interesting to determine the minimax algorithm under this assumption. We im-
mediately face two difficulties here. First, due to stochastic nature of the adversary, it is no longer
possible to follow standard approaches of minimax analysis, such as backward induction[1, 2] or
sequential minimax duality [10, 3], and we need to resort to a different technique. We define the
notion of permutation invariance of prediction strategies. This let us identify a class of “admiss-
able” strategies (which we call permutation invariant), and show that every strategy outside this
class will perform not better than some permutation invariant strategy. Secondly, while the regret is
a single, commonly used performance metric in the worst-case setting, the situation is different in
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the stochastic case. We know at least three potentially useful metrics in the stochastic setting: the
expected regret, the expected redundancy, and the excess risk [11], and it is not clear, which of them
should be used to define the minimax strategy.

Fortunately, it turns out that there exists a single strategy which is minimax with respect to all three
metrics simultaneously. In the case of binary losses, which take out values from {0, 1}, this strategy
turns out to be the Follow the Leader (FL) algorithm, which chooses an expert with the smallest
cumulative loss at a given trial (with ties broken randomly). Interestingly, FL is known to perform
poorly in the worst-case, as its worst-case regret will grow linearly with T [2]. On the contrary, in
the stochastic setting with binary losses, FL has also the smallest regret, redundancy, and excess risk
over all permutation invariant prediction strategies, simultaneously for all distributions over binary
losses! In a more general case of continuous losses in the range [0, 1], FL is provably suboptimal.
However, by applying binarization trick to the losses [6], i.e. randomly setting them to {0, 1} such
that the expectation matches the actual loss, and using FL on the binarized sequence, we obtain the
minimax strategy in the continuous case.

2 Problem Setting

In the game of prediction with expert advice, at each trial t = 1, . . . , T , the algorithm predicts with
a distribution wt ∈ ∆K over K experts. Then the loss vector `t ∈ XK is revealed (where X is
either {0, 1} or [0, 1]), and the algorithm suffers loss wt ·`t. The sequence of outcomes `1, . . . , `t is
abbreviated as `t. We let Lt,k denote the cumulative loss of expert k at iteration t, Lt,k =

∑
q≤t `t,k.

We assume there areK distributions P = (P1, . . . , PK) over X , such that for each k, the losses `t,k,
t = 1, . . . , T , are generated i.i.d. from Pk. Note that this implies that `t,k is independent from `t′,k′
whenever t′ 6= t or k 6= k′. We formally define the prediction strategy as a sequence of T functions
ω = (w1, . . . ,wT ), such that wt : X t−1 → ∆K . The performance of the strategy ω on the set of
distributions P can be measured by one of the three following metrics:

the expected regret: Reg(ω,P) = E
[ T∑
t=1

wt(`
t−1) · `t −min

k
LT,k

]
,

the expected redundancy: Red(ω,P) = E
[ T∑
t=1

wt(`
t−1) · `t

]
−min

k
E [LT,k] ,

the excess risk: Risk(ω,P) = E
[
wT (`T−1) · `T

]
−min

k
E [`T,k] ,

where in each case, the expectation is over the sequence `T with respect to distributions P1, . . . , PK .
Given performance measure R, we say that a strategy ω∗ is minimax with respect to R, if:

sup
P
R(ω∗,P) = inf

ω
sup
P
R(ω,P),

where the supremum is over all K-sets of distributions (P1, . . . , PK) on X , and the infimum is over
all prediction strategies.

We say that a strategy ω is permutation invariant if for any t = 1, . . . , T , and any permutation σ ∈
SK , where SK denotes the group of permutations over {1, . . . ,K}, wt(σ(`t−1)) = σ(wt(`

t−1)),
where for any vector v = (v1, . . . , vK), we defined σ(v) = (vσ(1), . . . , vσ(K)) and abbreviated
σ(`t−1) = σ(`1), . . . , σ(`t−1). In words, if we σ-permute the indices of all past loss vectors, the
resulting weight vector will be the σ-permutation of the original weight vector. Permutation invariant
strategies are natural, as they only rely on the observed outcomes, not on the expert indices.
Lemma 1. Let ω be permutation invariant. Then, for any permutation σ ∈ SK ,
Eσ(P)

[
wt(`

t−1) · `t
]

= EP
[
wt(`

t−1) · `t
]
, and moreover R(ω, σ(P)) = R(ω,P), where R

is the expected regret, expected redundancy, or excess risk, and σ(P) = (Pσ(1), . . . , Pσ(K)).

We now show that permutation invariant strategies are “admissable” in the following sense:
Theorem 2. For any strategy ω, there exists permutation invariant strategy ω̃, such that
supP R(ω̃,P) ≤ supP R(ω,P), where R is either the expected regret, the expected redundancy
or the excess risk.
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Theorem 2 statest that it suffices to search for minimax strategy only within the set of permutation
invariant strategies.

Given loss sequence `t−1, let N = | argminj=1,...,K Lt−1,j | be the size of the leader set at the
beginning of trial t. We define Follow the Leader (FL) strategy wfl

t such that wfl
t,k = 1

N if
k ∈ argminj Lt−1,j and wfl

t,k = 0 otherwise. In other words, FL predicts with the current leader,
breaking ties uniformly at random. It is easy to show that FL strategy is permutation invariant.

3 Binary losses

In this section, we set X = {0, 1}, so that all losses are binary. In this case, each Pk is a Bernoulli
distribution. Take any permutation invariant strategy ω. Using Lemma 1 K! on all σ ∈ SK :

EP
[
wt(`

t−1) · `t
]

=
1

K!

∑
σ

Eσ(P)

[
wt(`

t−1) · `t
]

︸ ︷︷ ︸
=: losst(wt,P)

. (1)

We now show the main result of this paper, a surprisingly strong property of FL strategy, which
states that FL minimizes losst(wt,P) over all K-sets of distributions simultaneously. Hence, FL is
not only optimal in the worst case, but is actually optimal for permutation-averaged expected loss for
any P , which implies by (1) that FL has the smallest expected loss among all permutation invariant
strategies for any P .

Theorem 3. Let ωfl = (wfl
1 , . . . ,w

fl
T ) be the FL strategy. Then, for any K-set of distributions

P = (P1, . . . , PK) over binary losses, for any strategy ω = (w1, . . . ,wT ), and any t = 1, . . . , T :

losst(w
fl
t ,P) ≤ losst(wt,P).

The consequence of Theorem 3 is the following corollary which states the minimaxity of FL strategy
for binary losses:

Corollary 4. Let ωfl = (wfl
1 , . . . ,w

fl
T ) be the FL strategy. Then, for any P over binary losses, and

any permutation invariant strategy ω:

R(ωfl,P) ≤ R(ω,P).

where R is the expected regret, expected redundancy, or excess risk. This implies:

sup
P
R(ωfl,P) = inf

ω
sup
P
R(ω,P),

where the supremum is over all distributions on binary losses, and the infimum over all (not neces-
sarily permutation invariant) strategies.

Proof. The second statement immediately follows from the first statement and Theorem 2. For the
first statement, note that the “loss of the best expert” part of each measure only depends on P .
Hence, we only need to show that for any t = 1, . . . , T ,

EP
[
wfl
t · `t

]
≤ EP [wt · `t] .

Since wfl
t and wt are permutation invariant, Lemma 1 shows that EP

[
wfl
t · `t

]
= losst(w

fl
t ,P), and

similarly, EP [wt · `t] = losst(wt,P). Application of Theorem 3 finishes the proof.

4 Continuous losses

In this section, we consider the general case X = [0, 1] of continuous loss vectors. We give a
modification of FL and prove its minimaxity. In the appendix, we justify the modification by arguing
that the vanilla FL strategy is not minimax for continuous losses.
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The modification of FL is based on the procedure we call binarization. A similar trick has already
been used in [6] to deal with non-integer losses in a different context. We define a binarization of any
loss value `t,k ∈ [0, 1] as a Bernoulli random variable bt,k which takes out value 1 with probability
`t,k and value 0 with probability 1− `t,k. In other words, we replace each non-binary loss `t,k by a
random binary outcome bt,k, such that E[bt,k] = `t,k. Note that if `t,k ∈ {0, 1}, then bt,k = `t,k, i.e.
binarization has no effect on losses which are already binary. Let us also define bt = (bt,1, . . . , bt,K),
where all K Bernoulli random variables bt,k are independent. Similarly, bt will denote a binary loss
sequence b1, . . . , bt, where the binarization procedure was applied independently (with a new set of
Bernoulli variables) for each trial t. Now, given the loss sequence `t−1, we define the binarized FL
strategy ωbfl by:

wbfl
t (`t−1) = Ebt−1

[
wfl
t (bt−1)

]
,

where wfl
t (bt−1) is the standard FL strategy applied to binarized losses bt−1, and the expectation is

over internal randomization of the algorithm (binarization variables).

Note that if the set of distributions P has support only on {0, 1}, then wbfl
t ≡ wfl

t . On the other
hand, these two strategies may differ significantly for non-binary losses. However, we will show
that for any K-set of distributions P (with support in [0, 1]), wbfl

t will behave in the same way as
wfl
t would behave on some particular K-set of distributions over binary losses. To this end, we

introduce binarization of a K-set of distributions P , defined as Pbin = (P bin
1 , . . . , P bin

K ), where
P bin
k is a distribution with support {0, 1} such that:

EPbin
k

[`t,k] = P bin
k (`t,k = 1) = EPk

[`t,k].

In other words, P bin
k is a Bernoulli distribution which has the same expectation as the original

distribution (over continuous losses) Pk. We now show the following results:

Lemma 5. For any K-set of distributions P = (P1, . . . , PK) with support on X = [0, 1],

E`t∼Pt

[
wbfl
t (`t−1) · `t

]
= E`t∼(Pbin)t

[
wfl
t (`t−1) · `t

]
.

Lemma 6. For any K-set of distributions P = (P1, . . . , PK) with support on X = [0, 1],

R(ωbfl,P) ≤ R(ωfl,Pbin),

where R is either the expected regret, the expected redundancy, or the excess risk.

Theorem 7. Let ωbfl = (wbfl
1 , . . . ,wbfl

T ) be the binarized FL strategy. Then:

sup
P
R(ωbfl,P) = inf

ω
sup
P
R(ω,P),

whereR is the expected regret, expected redundancy, or excess risk, the supremum is over allK-sets
of distributions on [0, 1], and the infimum is over all prediction strategies.

In the appendix, we argue that vanilla FL is not the minimax strategy for continuous losses, so that
the binarization procedure is justified.

5 Open Problem

The setting considered in this paper is quite limited even in the stochastic case, as it does not consider
distributions over loss vectors which are i.i.d. between trials, but not necessarily i.i.d. between
experts. It would be interesting to determined the minimax strategy in this more general setting.
Preliminary computational experiment suggest that FL is not minimax even for binary losses, when
dependencies between experts are allowed.

Acknowledgments. The author was supported by the Polish National Science Centre under grant
no. 2013/11/D/ST6/03050.
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Proof of Lemma 1

We first show that the expected loss of the algorithm at any iteration t = 1, . . . , T , is the same for
both σ(P) and P:

Eσ(P)

[
wt(`

t−1) · `t
]

= EP
[
wt(σ(`t−1)) · σ(`t)

]
= EP

[
σ(wt(`

t−1)) · σ(`t)
]

= EP
[
wt(`

t−1) · `t
]
,

where the first equality is due to the fact, that permuting the distributions is equivalent to permuting
the coordinates of the losses (which are random variables with respect to these distributions), the
second equality exploits the permutation invariance of ω, while the third inequality uses a simple
fact that the dot product is invariant under permuting both arguments. Therefore, the “loss of the
algorithm” part of any of the three measures (regret, redundancy, risk) remains the same. To show
that the “loss of the optimal” part of each measure is the same, note that for any t = 1, . . . , T ,
k = 1, . . . ,K, Eσ(P) [`t,k] = EP

[
`t,σ(k)

]
, which implies:

min
k

Eσ(P) [`T,k] = min
k

EP
[
`T,σ(k)

]
= min

k
EP [`T,k] ,

min
k

Eσ(P) [LT,k] = min
k

EP
[
LT,σ(k)

]
= min

k
EP [LT,k] ,

Eσ(P)

[
min
k
LT,k

]
= EP

[
min
k
LT,σ(k)

]
= EP

[
min
k
LT,k

]
,

so that the “loss of the best expert” parts of all measures are also the same for both σ(P) and P .

Proof of Theorem 2

Define ω̃ = (w̃1, . . . , w̃T ) as:

w̃t(`
t−1) =

1

K!

∑
τ∈SK

τ−1
(
wt(τ(`t−1))

)
.

Note that ω̃ is a valid prediction strategy, since w̃t is a function of `t−1, and w̃t ∈ ∆K (w̃t is a
convex combination of K! distributions, so it is a distribution itself). Moreover, ω̃ is permutation
invariant:

w̃t(σ(`t−1)) =
1

K!

∑
τ∈SK

τ−1
(
wt(τσ(`t−1))

)
=

1

K!

∑
τ∈SK

(τσ−1)−1
(
wt(τ(`t−1))

)
=

1

K!

∑
τ∈SK

στ−1
(
wt(τ(`t−1))

)
= σ(w̃t(`

t−1)),

where the second inequality is from replacing the summation index τ 7→ τσ. Now, note that the
expected loss of w̃t is:

EP
[
w̃t(`

t−1) · `t
]

=
1

K!

∑
τ∈SK

EP
[
τ−1

(
wt(τ(`t−1))

)
· `t
]

=
1

K!

∑
τ∈SK

EP
[
wt(τ(`t−1)) · τ(`t)

]
=

1

K!

∑
τ∈SK

Eτ−1(P)

[
wt(`

t−1) · `t
]

=
1

K!

∑
σ∈SK

Eσ(P)

[
wt(`

t−1) · `t
]
.

Since the “loss of the best expert” parts of all three measures are invariant under any permutation of
P (see the proof of Lemma 1), we have:

R(ω̃,P) =
1

K!

∑
σ∈SK

R(ω, σ(P)) ≤ max
σ∈SK

R(ω, σ(P)).

Hence,
sup
P
R(ω̃,P) ≤ sup

P
max
σ∈SK

R(ω, σ(P)) = sup
P
R(ω,P).
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Proof of Theorem 3

For any distribution Pk over binary losses, let pk := Pk(`t,k = 1) = EPk
[`t,k]. We have:

losst(wt,P) =
1

K!

∑
σ

Eσ(P)

[
wt(`

t−1) · `t
]

(2)

=
1

K!

∑
σ

Eσ(P)

[
wt(`

t−1)
]
· Eσ(P) [`t]

=
1

K!

∑
σ

∑
`t−1

(
K∏
k=1

p
∑t−1

q=1 `q,k

σ(k) (1− pσ(k))
t−1−

∑t−1
q=1 `q,k

)(
K∑
k=1

wt,k(`t−1)pσ(k)

)

=
1

K!

∑
`t−1

K∑
k=1

wt,k(`t−1)

∑
σ

K∏
j=1

p
∑t−1

q=1 `q,j

σ(j) (1− pσ(j))
t−1−

∑t−1
q=1 `q,jpσ(k)


︸ ︷︷ ︸

=: losst(wt,P|`t−1)

,

where in the second equality we used the fact that wt depends on `t−1 and does not depend on `t.
Fix `t−1 and consider the term losst(wt,P|`t−1). This term is linear in wt, hence it is minimized
by wt = ek for some k = 1, . . . ,K, where ek is the k-th standard basis vector with 1 on the
k-th coordinate, and zeros on the remaining coordinates. We will use a shorthand notation Lj =∑t−1
q=1 `q,j , for j = 1, . . . ,K, and L = (L1, . . . , LK). In this notation, we rewrite losst(wt,P|`t−1)

as:

losst(wt,P|`t−1) =

K∑
k=1

wt,k(`t−1)

∑
σ

K∏
j=1

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k)

 , (3)

We will show that for any P , and any `t−1 (and hence, any L), losst(wt,P|`t−1) is minimized by
setting wt = ek∗ for any k∗ ∈ argminj Lj . In other words, we will show that for any P , L, any
k∗ ∈ argminj Lj , and any k = 1, . . . ,K,

losst(ek∗ ,P|`t−1) ≤ losst(ek,P|`t−1).

or equivalently, using (3), that for any P , L, k∗ ∈ argminj Lj , and k = 1, . . . ,K,

∑
σ

K∏
j=1

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k∗) ≤

∑
σ

K∏
j=1

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k) (4)

We proceed by induction on K. Take K = 2 and note that when k∗ = k, there is nothing to prove,
as both sides of (4) are identical. Therefore, without loss of generality, assume k∗ = 1 and k = 2,
which implies L1 ≤ L2. Then, (4) reduces to:

pL1
1 pL2

2 (1− p1)t−1−L1(1− p2)t−1−L2p1 + pL1
2 pL2

1 (1− p2)t−1−L1(1− p1)t−1−L2p2

≤ pL1
1 pL2

2 (1− p1)t−1−L1(1− p2)t−1−L2p2 + pL1
2 pL2

1 (1− p2)t−1−L1(1− p1)t−1−L2p1,

After rearranging the terms, it amounts to show that:

(p1p2)L1
(
(1− p1)(1− p2)

)t−1−L2
(p1 − p2)

(
(p2(1− p1))L2−L1 − (p1(1− p2))L2−L1

)
≤ 0.

But this will hold if:

(p1 − p2)
(
(p2(1− p1))L2−L1 − (p1(1− p2))L2−L1

)
≤ 0. (5)

If L1 = L2, (5) clearly holds; therefore assume L1 < L2. We prove the validity of (5) by noticing
that:

p2(1− p1) > p1(1− p2) ≥ 0 ⇐⇒ p2 > p1,

which means that the two factors of the product on the left-hand side of (5) have the opposite sign
(when p1 6= p2) or are zero at the same time (when p1 = p2). Hence, we proved (5), which implies
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(4) when k∗ = 1 and k = 2. The opposite case k∗ = 2, k = 1 with L2 ≤ L1 can be shown with
exactly the same line of arguments by simply exchanging the indices 1 and 2.

Now, we assume (4) holds for K − 1 ≥ 2 experts and any P = (P1, . . . , PK−1), any L =
(L1, . . . , LK−1), any k∗ ∈ argminj=1,...,K−1 Lj , and any k = 1, . . . ,K − 1, and we show that
it also holds for K experts. Take any k∗ ∈ argminj=1,...,K Lj , and any k = 1, . . . ,K. Without loss
of generality, assume that k∗ 6= 1 and k 6= 1 (it is always possible find expert different than k∗ and
k, because there are K ≥ 3 experts). We expand the sum over permutations on the left-hand side of
(4) with respect to the value of σ(1):

K∑
s=1

pL1
s (1− ps)t−1−L1

∑
σ : σ(1)=s

K∏
j=2

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k∗),

and we also expand the sum on the right-hand side of (4) in the same way. To prove (4), it suffices
to show that every term in the sum over s on the left-hand side is not greater than the corresponding
term in the sum on the right-hand side, i.e. to show that for any s = 1, . . . ,K,

∑
σ : σ(1)=s

K∏
j=2

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k∗) ≤

∑
σ : σ(1)=s

K∏
j=2

p
Lj

σ(j)(1− pσ(j))
t−1−Ljpσ(k). (6)

We now argue that this inequality follows directly from the inductive assumption by dropping L1

and Ps, and applying (4) to such a (K − 1)-expert case. More precisly, note that the sum on both
sides of (6) goes over all permutations on indices (1, . . . , s− 1, s+ 1, . . . ,K) and since k, k∗ 6= 1,
k∗ ∈ argminj=2,...,K Lj and k ≥ 2. Hence, applying (4) to K − 1 expert case with K − 1
distributions (P1, P2, . . . , Ps−1, Ps+1, . . . , PK) (or any permutation thereof), and K − 1 integers
(L2, . . . , LK) immediately implies (6).

Thus, we proved (4) which states that losst(wt,P|`t−1) is minimized by any leader k∗ ∈
argminj Lj , where Lj =

∑t−1
q=1 `q,j . This means losst(wt,P|`t−1) is also minimized by the

FL strategy wfl
t , which distributes its mass uniformly over all leaders. Since FL minimizes

losst(wt,P|`t−1) for any `t−1, by (2) it also minimizes losst(wt,P).

Note that the proof did not require uniform tie breaking over leaders, as any distribution over leaders
would work as well. Uniform distribution, however, makes the FL strategy permutation invariant.

Proof of Lemma 5

Let pk be the expectation of `t,k according to either Pk or P bin
k , pk := EPk

[`t,k] = EPbin
k

[`t,k].
Since for any prediction strategy ω, wt depends on `t−1 and does not depend on `t, we have
EP
[
wbfl
t · `t

]
= EP

[
wbfl
t

]
· EP [`t] = EP

[
wbfl
t

]
· p, where p = (p1, . . . , pK). Simiarly,

EPbin

[
wfl
t · `t

]
= EPbin

[
wfl
t

]
· p. Hence, we only need to show that EP

[
wbfl
t

]
= EPbin

[
wfl
t

]
.

This holds because wbfl
t “sees” only binary outcomes resulting from the joint distribution of P and

the distribution of binarization variables:

E`t−1∼Pt−1

[
wbfl
t (`t−1)

]
= E`t−1∼Pt−1,bt−1

[
wfl
t (bt−1)

]
,

and for any bt,k, the probability (jointly over Pk and binarization variables) of bt,k = 1 is the same
as probability of `t,k = 1 over the distribution P bin

k :

P (bt,k = 1) =

∫
[0,1]

P (bt,k = 1|`t,k)Pk(`t,k)d`t,k

=

∫
[0,1]

`t,kPk(`t,k)d`t,k = pt = P bin(`t,k = 1).

Hence,
E`t−1∼Pt−1,bt−1

[
wfl
t (bt−1)

]
= E`t−1∼(Pbin)t−1

[
wfl
t (`t)

]
.
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Proof of Lemma 6

Lemma 5 shows that the expected loss of ωbfl on P is the same as the expected loss of ωfl on Pbin.
Hence, to prove the inequality, we only need to consider the “loss of the best expert” part of each
measure. For the expected redundancy, and the expected regret, it directly follows from the definition
of Pbin that for any t, k, EP [`t,k] = EPbin [`t,k], hence mink EP [`T,k] = mink EPbin [`T,k], and
simiarly, mink EP [LT,k] = mink EPbin [LT,k]. Thus, for the expected redundancy and the excess
risk, the lemma actually holds with equality.

For the expected regret, we will show that EP [mink LT,k] ≥ EPbin [mink LT,k], which will finish
the proof. Using the argument from the proof of Lemma 5, and denoting BT,k =

∑T
t=1 bt,k, we

have:

E`T∼(Pbin)T [min
k
LT,k] = E`T∼PT ,bT [min

k
BT,k] ≤ E`T∼PT

[
min
k

EbT [BT,k|`T ]

]
= E`T∼PT [min

k
LT,k],

where the inequality follows from Jensen’s inequality applied to a concave function min(·).

Proof of Theorem 7

Since ωbfl is the same as ωfl when all the losses are binary, R(ωbfl,P) = R(ωfl,P) for every P
over binary losses. Furthermore, Lemma 6 states that R(ωbfl,P) ≤ R(ωbfl,Pbin), i.e. for every
P over continuous losses, there is a corresponding Pbin over binary losses which incurs at least the
same regret/redundancy/risk to ωbfl. Therefore,

sup
P on [0,1]

R(ωbfl,P) = sup
P on {0,1}

R(ωbfl,P) = sup
P on {0,1}

R(ωfl,P).

By the second part of Corollary 4, for any prediction strategy ω:
sup

P on {0,1}
R(ωfl,P) ≤ sup

P on {0,1}
R(ω,P) ≤ sup

P on [0,1]

R(ω,P),

which finishes the proof.

A counterexample to FL strategy

We now argue that the vanilla FL is not the minimax strategy for continuous losses, so that the
binarization procedure is justified. We will only consider excess risk for simplicity, but we can use
similar arguments to show a counterexample for the expected regret and the expected redundancy
as well. Take K = 2 experts, T = 2 iterations and distributions P1, P2 on binary losses. Denote
p1 = P1(`t,1 = 1) and p2 = P2(`t,2 = 1), and assume p1 ≤ p2. The risk of FL strategy is given by:(

p1p2 + (1− p1)(1− p2)
)p1 + p2

2︸ ︷︷ ︸
ties

+p1(1− p2)p2 + p2(1− p1)p1 − p1 =
δ

2
− δ2

2
,

where δ = p2−p1. Maximizing over δ the expression above gives δ∗ = 1
2 and the maximum risk of

FL on binary losses is equal to 1
8 . This is also the minimax risk on continuous losses, as follows from

the proof of Theorem 7 (because the binarized FL is the minimax strategy on continuous losses, and
it achieves the maximum risk on binary losses). We now show that there exist distributions P1, P2

on continuous losses which force FL to suffer more excess risk than 1
8 . We take P1 with support

on two points {ε, 1}, where ε is a very small positive number, and p1 = P1(`t,1 = 1). Note that
E[`t,1] = p1 + ε(1− p1). P2 has support on {0, 1− ε}, and let p2 = P2(`t,2 = 1). We also assume
p1 < p2, i.e. expert 1 is the “better” expert. The main idea in this counterexample is that by using ε
values, all “ties” are resolved in favor of expert 2, which makes the FL algorithm suffer more loss.
More precisely, this risk of FL is now given by:(

p1p2 + (1− p1)(1− p2)
)
p2︸ ︷︷ ︸

ties

+p1(1− p2)p2 + p2(1− p1)p1 − p1 +O(ε).

Choosing, e.g. p1 = 0 and p2 = 0.5, this gives 1
4 + O(ε) excess risk, which is more than 1

8 , given
tha we take ε sufficiently small.
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