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Goals

I Primary goal
I Reducing the memory-footprint in hybrid OLTP&OLAP database systems
I Retaining high query performance and transactional throughput

I Secondary goals / future work
I Eviting cold data to secondary storage
I Reducing costly disk I/O

I Out of scope
I Hot/cold clustering (see previous work of Funke et al.: “Compacting

Transactional Data in Hybrid OLTP&OLAP Databases”)



Compression in Hybrid OLTP&OLAP Database Systems

I SAP HANA (existing approach)
I Compress entire relations
I Updates are performed in an uncompressed write-optimized partition
I Implicit hot/cold clustering
I Merge partitions

I HyPer (our approach)
I Split relations in fixed size chunks (e.g., 64 K tuples)
I Cold chunks are “frozen” into immutable Data Blocks



Data Blocks

I Compressed columnar storage format
I Designed for cold data (mostly read)
I Immutable and self-contained
I Fast scans and fast point-accesses
I Novel index-structure to narrow scan ranges
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Compression Schemes
I Lightweight compression only

I Single value, byte-aligned truncation, ordered dictionary

I Efficient predicate evaluation, decompression and point-accesses
I Optimal compression chosen based on the actual value distribution

I Improves compression ratio, amortizes light-weight compression schemes and
redundancies caused by block-wise compression
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Positional SMAs

I Lightweight indexing
I Extension of traditional SMAs (min/max-indexes)
I Narrow scan ranges in a Data Block
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I Supported predicates:
I column ◦ constant, where ◦ ∈ {=, is,<,≤,≥, >}
I column between a and b



Positional SMAs - Details
I Lookup table where each table entry contains a range with potential matches
I For n byte values, the table consists of n× 256 entries
I Only the most significant non-zero byte is considered
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Positional SMAs - Example
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Challenge for JIT-compiling Query Engines

I HyPer compiles queries just-in-time (JIT) using the LLVM compiler framework
I Generated code is data-centric and processes a tuple-at-a-time

for (const Chunk& c : relation.chunks) {
for (unsigned row=0; row!=c.rows; ++row) {
auto attr0 = c.column[0].data[row];
auto attr3 = c.column[3].data[row];
// check scan restrictions
if (tuple qualifies) {

// code of consuming operator
...

} } }

I Data Blocks individually determine the best suitable compression scheme for
each column on a per-block basis

I The variety of physical representations either results in
I multiple code paths => exploding compile-time
I or interpretation overhead => performance drop at runtime



Vectorization to the Rescue

I Vectorization greatly reduces the interpretation overhead
I Spezialized vectorized scan functions for each compression scheme
I Vectorized scan extracts matching tuples to temporary storage where tuples

are consumed by tuple-at-a-time JIT code
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Predicate Evaluation using SIMD Instructions
Find Initial Matches
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Predicate Evaluation using SIMD Instructions
Additional Restrictions
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Evaluation



Compression Ratio

Size of TPC-H, IMDB cast info, and a flight database in HyPer and Vectorwise:

TPC-H SF100 IMDB1 cast info Flights2

uncompressed

CSV 107 GB 1.4 GB 12 GB
HyPer 126 GB 1.8 GB 21 GB
Vectorwise 105 GB 0.72 GB 11 GB

compressed

HyPer 66 GB (0.62×) 0.50 GB (0.36×) 4.2 GB (0.35×)
Vectorwise 54 GB (0.50×) 0.24 GB (0.17×) 3.2 GB (0.27×)

1http://www.imdb.com
2http://stat-computing.org/dataexpo/2009/

http://www.imdb.com
http://stat-computing.org/dataexpo/2009/


Query Performance

Runtimes of TPC-H queries (scale factor 100) using different scan types on
uncompressed and compressed databases in HyPer and Vectorwise.

scan type geometric mean sum

HyPer

JIT (uncomressed) 0.586s 21.7s
Vectorized (uncompressed) 0.583s (1.01×) 21.6s

+ SARG 0.577s (1.02×) 21.8s
Data Blocks (compressed) 0.555s (1.06×) 21.5s

+ SARG/SMA 0.466s (1.26×) 20.3s
+ PSMA 0.463s (1.27×) 20.2s

Vectorwise

uncompressed storage 2.336s 74.4s
compressed storage 2.527s (0.92×) 78.5s



Query Performance (cont’d)

Speedup of TPC-H Q6 (scale factor 100) on block-wise sorted3 data (+SORT).
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OLTP Performance - Point Access

Throughput (in lookups per second) of random point access queries
select * from customer where c_custkey = randomCustKey()
on TPC-H scale factor 100 with a primary key index on c_custkey.

Throughput [lookups/sec]

Uncompressed 545,554

Data Blocks 294,291 (0.54×)



OLTP Performance - TPC-C
TPC-C transaction throughput (5 warehouses), old neworder records
compressed into Data Blocks:

Throughput [Tx/sec]

Uncompressed 89,229

Data Blocks 88,699 (0.99×)

Only read-only TPC-C transactions order status and stock level; all
relations frozen into Data Blocks:

Throughput [Tx/sec]

Uncompressed 119,889

Data Blocks 109,649 (0.91×)



Performance of SIMD Predicate Evaluation

Speedup of SIMD predicate evaluation of type l ≤ A ≤ r with selectivity 20%:
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Performance of SIMD Predicate Evaluation (cont’d)

Costs of applying an additional restriction with varying selectivities of the first
predicate and the selectivity of the second predicate set to 40%:
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Advantages of Byte-Addressability
Predicate Evaluation

Cost of evaluating a SARGable predicate of type l ≤ A ≤ r with varying
selectivities:
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I dom(A) = [0, 216]

I Intentionally, the domain exceeds the 2-byte truncation by one bit
I 17-bit codes with bit-packing, 32-bit codes with Data Blocks



Advantages of Byte-Addressability
Unpacking matching tuples

Cost of unpacking matching tuples:
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I 3 attributes, dom(A) = dom(B) = [0, 216] and dom(C) = [0, 28])
I Intentionally, the domains exceed 1-byte and 2-byte truncation by one bit
I The compression ratio of bit-packing is almost two times higher in this

scenario



Thank you!


