
Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage using both Vectorization and Compilation †

[EXTENDED ABSTRACT]

Harald Lang1,‡, Tobias Mühlbauer1, Florian Funke2,∗,
Peter Boncz3,∗, Thomas Neumann1, Alfons Kemper1

1Technical University Munich, 2Snowflake Computing, 3Centrum Wiskunde & Informatica
{harald.lang,muehlbau,neumann,kemper}@in.tum.de, florian.funke@snowflake.net, boncz@cwi.nl

This work aims at reducing the main-memory footprint
in high performance hybrid OLTP & OLAP databases, while
retaining high query performance and transactional through-
put. The basic assumptions for this work are (i) that the
data set can be separated into hot (mostly written) and
cold (mostly read) data, (ii) that OLTP mostly affects the
hot data set but may also access (read/update) cold data.
For this purpose an innovative compressed columnar storage
format for cold data, called Data Blocks is introduced. The
problem of hot/cold clustering in general has been solved in
the previous work of Funke et al. in [2], whereas this work
presents the data structures to efficiently manage cold data.

To achieve highest OLTP performance the compression
schemes of Data Blocks are very light-weight, such that
OLTP transactions can still quickly access individual tu-
ples. This sets our storage scheme apart from those used in
specialized analytical databases, where data must usually
be bit-unpacked. Data Blocks employ compression tech-
niques like ordered dictionary compression, truncation and
single value compression. In any case, the compressed rep-
resentation of an attribute value remains byte-addressable.
Typically, these values are represented as 1-, 2- or 4-byte
integers. This also applies for dictionary encoded string-like
attributes. Light-weight compression allows efficient pred-
icate evaluation and cheap access to each individual tuple,
as no other tuples are touched during decompression.

In contrast to the SAP HANA [1] system, which divides
relations into a read- and a write-optimized partition to ac-
celerate hybrid workloads, our HyPer system uses a differ-
ent approach: Relations are divided into fixed-size chunks,
e.g., 216 tuples, which are individually compressed into read-
optimized immutable Data Blocks when they are identi-
fied as cold. Freezing chunks individually into Data Blocks
avoids costly merge phases of the read-optimized (compressed)
and the write-optimized (uncompressed) partitions. Fur-
ther, all existing index structures are unaffected as all tuples
can still be directly accessed by their tuple identifiers.

To speed up scans on Data Blocks, we introduce a novel
“positional” type of Small Materialized Aggregates [5] called
Positional SMA (PSMA). PSMAs are small indexes that
narrow the scan range within a block even if the block cannot
be skipped based on materialized minimum and maximum
values. Internally, PSMAs consist of a concise lookup table
(typically 2 KB, 4 KB or 8 KB) that is computed when a
cold chunk is “frozen” into a Data Block. The table entries
contain scan ranges that point to the compressed data inside
a Data Block with potential matching tuples. PSMAs are
designed to support scan restrictions like =, <,≤, >,≥ and
as well as between predicates.

Cold
compressed Data Blocks

Hot
uncompressedmostly point acceses

through index;
some on cold data

query
pipeline

OLAP
OLTP

Figure 1: We propose the novel Data Block format
that allows efficient scans and point accesses on com-
pressed data and address the challenge of integrating
multiple storage layout combinations in a compiling
tuple-at-a-time query engine by using vectorization.

Compared to sub-byte encodings like BitWeaving [4], the
compression schemes in Data Block naturally offer lower
compression ratios. However, due to the chunked relation
approach we can choose the optimal compression method
based on the actual value distribution of an attribute within
each chunk. This further reduces the memory footprint
while remaining byte-addressable. Nevertheless, the result-
ing variety of physical data representations constitutes a
challenge for JIT-compiling tuple-at-a-time query engines:
Different storage layout combinations and extraction rou-
tines require either the generation of multiple code paths or
to accept runtime overhead incurred by interpretation. So
far high-performance analytical systems use either vector-
ized query execution or “just-in-time” (JIT) query compi-
lation. The fine-grained adaptivity of Data Blocks necessi-
tates the integration of the best features of each approach by
an interpreted vectorized scan subsystem feeding into JIT-
compiled query pipelines.

Our thorough experimental evaluation of Data Blocks in-
tegrated into HyPer [3], our full-fledged hybrid OLTP & OLAP
database system, shows that Data Blocks accelerate perfor-
mance on a variety of query workloads while retaining high
transaction throughput. We further compare the perfor-
mance of predicate evaluation and unpacking with a hori-
zontally bit-packed storage and show that Data Blocks out-
perform bit-packing in almost all cases by factors.

†To appear at SIGMOD 2016
‡Speaker
∗Work done while at Technical University Munich.

References
[1] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg,

and W. Lehner. SAP HANA Database: Data
Management for Modern Business Applications.
SIGMOD Record, 40(4), 2011.

[2] F. Funke, A. Kemper, and T. Neumann. Compacting
Transactional Data in Hybrid OLTP&OLAP
Databases. PVLDB, 5(11), 2012.

[3] A. Kemper and T. Neumann. HyPer: A Hybrid
OLTP&OLAP Main Memory Database System based
on Virtual Memory Snapshots. In ICDE, 2011.

[4] Y. Li and J. M. Patel. BitWeaving: Fast Scans for
Main Memory Data Processing. In SIGMOD, 2013.

[5] G. Moerkotte. Small Materialized Aggregates: A Light
Weight Index Structure for Data Warehousing. In
VLDB, 1998.

