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ABSTRACT
Database processes must be cache-efficient to effectively utilize
modern hardware. In this paper, we analyze the importance of
temporal locality and the resultant cache behavior in scheduling
database operators for in-memory, block oriented query process-
ing. We demonstrate how the overall performance of a workload
of multiple database operators is strongly dependent on howthey
are interleaved with each other. Longer time slices combined with
temporal locality within an operator amortize the effects of the ini-
tial compulsory cache misses needed to load the operator’s state,
such as a hash table, into the cache. Though running an operator
to completion over all of its input results in the greatest amortiza-
tion of cache misses, this is typically infeasible because of the large
intermediate storage requirement to materialize all inputtuples to
an operator. We show experimentally that good cache performance
can be obtained with smaller buffers whose size is determined at
runtime. We demonstrate a low-overhead method of runtime cache
miss sampling using hardware performance counters. Our evalua-
tion considers two common database operators with state: aggrega-
tion and hash join. Sampling reveals operator temporal locality and
cache miss behavior, and we use those characteristics to choose an
appropriate input buffer/block size. The calculated buffer size bal-
ances cache miss amortization with buffer memory requirements.

1. INTRODUCTION
As the cost per byte of random-access memory continues to de-

cline, large database operations may be performed entirelyin main-
memory. It has been observed that relatively high latency accesses
to main memory account for a significant portion of in-memory
database query processing time [1]. Much research has focused
on improving the cache behavior of specific database operations,
e.g., hash join, aggregation, partitioning, index maintenance and
traversal, etc. (see the discussion of related work in Section 2).
Rather than improving the cache behavior of a specific operation,
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this paper examines the crucial higher-level question of how differ-
ent operators interact with each other in the cache.

To motivate this problem, consider the following simple exam-
ple. A database has two operators, A and B, which it must run.
These operators may be from a single query, or from differentcon-
currently running queries. Each operator uses a relativelylarge,
private data structure such as a hash table. If operator A’s data
structure fits within the cache, after processing enough tuples, its
data structures will become cache resident and subsequent accesses
will be cache hits, which will result in faster processing times for
those tuples. If, however, operator B’s execution is interleaved with
operator A’s, then B’s data structure may evict A’s from the cache.
This means that when A resumes processing, it will again suffer
cache misses to load its data structure into the cache. If toofew
tuples are processed by each operator, neither operator mayreach
a point at which its data structure is cache resident. Even though
the operators may have been designed to carefully use the cache in
isolation, when their execution is interleaved neither benefits from
that careful design.

Our approach is to use large enough batches of work for each of
A and B so that the initial compulsory cache misses are amortized
over many input tuples. To batch the work, we insert buffers into
a query plan to hold a batch of intermediate results that are inputs
to an operator. For nonblocking operators, we also insert a buffer
to hold the output from the operator. Each operator is scheduled so
that it processes its entire input buffer in a single batch.

We use hardware performance counters in an on-line fashion to
measure the number of cache misses suffered by an operator. This
choice gives the system accurate numbers with negligible overhead
and without needing to know how an operator works. The system
calculates space/time trade-off curves of each operator inthe sys-
tem. This curve is derived from the L2 data cache miss counts mea-
sured during the initial runs of the operator. Based on thesecurves,
the system can estimate the payoff for increasing (or decreasing)
the buffer size for each operator.

On a multi-core system, we adopt the approach that all available
threads should be devoted to a single operator during a time-slice,
so that all threads can share common data structure elementsin the
cache and effectively utilize the full shared L2 cache and the in-
struction caches. If we allowed each thread to perform independent
work, then there would be much less effective cache per thread, and
cache interference would be much more likely [19].

We experimentally evaluate our system using a Sun UltraSPARC
T1 machine that has32 on-chip hardware thread contexts. We study
the two most common database operators with state, namely aggre-
gation and joins. We show that operator interleaving can more than
double the execution time when compared with a plan in which
operators are not interleaved. We demonstrate the importance of



identifying operators with state that fits in the cache and then pro-
cessing enough tuples with those operators in order to amortize the
cost of loading that state into the cache. When memory is plentiful,
large buffers between operators give good performance, butwhen
memory is limited, more buffer space should be allocated to those
operators that benefit the most from temporal locality in accesses to
their state. Further, we show that in a mixed operator environment
where total buffer space is limited, allocating buffer space based on
measured cache miss characteristics of operators can result in a3%
to 8% improvement over a naive allocation of buffer space.

2. RELATED WORK
A large body of related work has sought to make specific database

operations cache conscious in order to improve performanceby
minimizing the processor to memory bottleneck. Examples ofthis
approach include making data structures more cache-conscious by
designing them to be either more compact or otherwise harness
temporal or spatial locality [15, 16, 11, 3, 5, 9].

Processing data in batches to improve cache behavior is proposed
by Padmanabhan et al. [14]. Their study did not explicitly consider
interleaving of operators, and the size of their aggregate operator’s
state was typically small enough to fit in the L1 data cache. Asa
result, their optimal block size was small, about half the size of the
L1 data cache. Padmanabhan et al. demonstrate that such mem-
ory optimizations make a difference even in a disk-based database
system.

Buffering between operators in a query plan to reduce instruction
cache misses was proposed by [21], but the question of buffering to
reduce cache misses for operators with state is not addressed. In an
OLTP workload where there may not be enough tuples within one
plan to make buffering work, instruction cache misses are reduced
by context switching between different transactions in order to run
a different transaction over the same instructions [7]. In this paper
our focus is on data cache misses for OLAP workloads.

Within one operation, buffering has been used to amortize cache
misses incurred when loading state, such as a portion of an index.
In [20], accesses to memory resident tree-based index structures are
buffered at various points in the index. In this paper, we apply a
similar concept of buffering to entire operators in a query plan with-
out requiring explicit knowledge of their data structures or memory
access patterns.

The question of allocating memory within database systems has
also been studied. For instance, Nag and DeWitt examine mem-
ory allocation for decision support queries in environments where
memory is constrained [13]. Our focus is on in-memory query pro-
cessing and the specific problem of interquery buffer allocation to
improve data cache performance for operators with state.

3. BACKGROUND
The total number of cache misses suffered by any one database

operator is the aggregate of the cache misses caused by each of its
memory-intensive subprocesses. A database operator whichis sort-
ing tuples, for instance, would read input, perform the sort(possi-
bly by accessing an index tree structure) and write output. Typically
these subprocesses each access specific data structures andthus ex-
hibit individual cache miss patterns. Some of these subprocesses,
such as sequential input scans, have little or no data locality, and the
rate at which they generate cache misses is more or less invariant
with time. Other subprocesses will display a decrease in therate
of new cache misses as a cache-resident working set is established
and the cache becomes “warm.” Examples of this latter pattern in-
clude tree traversal and cache-resident nested-loop joins. Figure 1
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Figure 1: Cache Miss Patterns — the total cache misses suf-
fered are a combination of the cache misses of the constituent
subprocesses. In this example, these level out soon (A), some-
what later (B) or remain constant (C).

shows this concept of the aggregation of individual patterns. In this
figure, patternA might represent a small data structure, patternB a
larger data structure that still fits in the cache, and pattern C a data
structure (such as a scanned input array) with no temporal locality.

In order to provide fair access for all operators, each wouldbe
given some processor time in turn in the form of a “time slice”. This
interleaving of the operators ensures that none of them are starved
of processor time, and the average latency is acceptable. Aslong
as the time slice is not too large, scheduling algorithms canbalance
latency and throughput in various ways [17, 8]. Operating systems,
for example, commonly use a time-slice of 10-100ms [17].

In this paper, we will be dealing with smaller-scale time-slices
for database operators with a somewhat different goal in mind. In
particular, if our database operator exhibits some temporal locality,
as in curvesA andB in Figure 1, there is an incentive to run it using
time-slices that are long enough to amortize the cache misses over
a larger number of records. In modern architectures, data cache
misses are expensive and a primary performance bottleneck.If
the time-slice is too small, these misses will be incurred again and
again; the operator will not benefit from a warm cache. The cache
access pattern of an operator may depend on its input; it is there-
fore important to be able to determine a time-slice tailoredto the
cache behavior of each operator instance, rather than adopting a
one-size-fits-all approach.

4. QUERY PROCESSING MODEL
We do not propose any structural changes to the query optimiza-

tion process. A query is supplied to the query optimizer, anda plan
is generated in the conventional manner.1 Buffers are inserted be-
fore operators with state such as joins and aggregations, ina fashion
similar to [21]. Buffers are also added after such operatorswhen
those operators are nonblocking.

In a running system, there may be many buffers active at one
time. A single query may employ many buffers, and many queries
may be running concurrently. For each buffer, we measure the
number of cache misses per tuplec using hardware performance
counters. To compare the relative benefit of extra memory fordif-
ferent buffers, we need to multiplyc by the rate at which tuples are

1It may be appropriate to modify the cost functions of certainop-
erators to take account of the reduced cache misses providedby the
present work.



generated per unit time,r. The productcr has units of cache misses
per unit time.

It is relatively easy to calculater by measuring how much time
it takes for a buffer to fill. In a practical system,r will vary due
to (a) changes in the phase of the query plan, such as a transition
from the build phase to the probe phase of a hash join, and (b) the
admission of new queries and the completion of existing queries.
Exactly how one would respond to changes inr is a complex ques-
tion. Responding to every fluctuation may introduce overhead as
buffers are repeatedly enlarged and shrunk. On the other hand, ig-
noring changes inr altogether would lead to suboptimal memory
allocation in changing workloads. We leave the question of how
to respond to changes inr to future work. For this paper, we will
assume that r is fixed and equal for each active buffer.

Consider, for example, a query that performs a sequence of for-
eign key hash joins between a fact probe tableF and dimension
build tablesD1 andD2, followed by an aggregation. The net rate
at which tuples flow into each of the three operators (two joins and
an aggregation) is the same, meaning that they each have roughly
the same value ofr.2

For the initial join betweenF andD1 there is no input buffer
needed becauseF is a base relation. An output bufferB1 is re-
quired, which also functions as the input buffer for the joinwith
D2. The output buffer from this join,B2, is the input buffer for the
aggregation. The flow of data is summarized in Figure 2.

Figure 2: A query plan with buffers.

The per-tuple performance (measured asc above) of the initial
join will depend on the size ofB1, and how well this buffer amor-
tizes the cost of reading the hash table onD1. The performance
of the second join will depend on the size of the two buffers. The
smaller buffer will be the tighter constraint on how many iterations
of the operator are possible during a single batch. This number of
iterations should (hopefully) amortize the cost of readingthe hash
table onD2. The performance of the aggregation will depend on
the size ofB2 and how well this buffer amortizes the cost of ac-
cessing the hash table of group-by keys and values.

There are some subtleties caused by the fact that the output buffer

2The instantaneous rate at which operators consume and/or pro-
duce tuples may vary. However, an operator that runs fast will then
have to wait longer for its input buffer to fill or for its output buffer
to empty.

of one operator is the input of the next. For example, theD2 join
may consume part of its input bufferB1, filling B2. If the initial
join were to be run now, it would have only a fraction ofB1 avail-
able, and would not fully amortize its cache misses. Instead, the
aggregation should be run to emptyB2, and then theD2 join run
again to drain more tuples fromB1. The following simple heuristic
achieves good scheduling behavior for chains of operators.

Let B1, . . . , Bn ben buffers in a chain, and letO0, . . . , On be
operators such thatOi consumes input fromBi, i = 1, . . . , n,
andOi outputs data toBi+1, i = 0, . . . , n − 1. We callO0 the
source operator, andOn the sink operator. We say an operatorOi

is available for scheduling if its input buffer (if it exists) is at least
half full, and its output buffer (if it exists) is at least half empty.

LEMMA 1. In any chain of buffered operators, there always ex-
ists an operator that is available for scheduling.

PROOF. If O0 is not available, then B1 must be more than half
full. By induction, if Oi is not available then Bi+1 must be more
than half full, for i = 1, . . . , n−1. But if Bn is more than half full,
On is available.

As a result of Lemma 1, it is always possible to order the op-
erators so that each is run when it has substantial input available
and substantial output space available. That way, the batchsize
will always be relatively large, and operators will not needto be
interrupted frequently because the input is exhausted quickly or the
output fills up quickly.

For a worst-case analysis, one can estimate thec value for each
operator by assuming that half its input buffer and half its output
buffer is available. Suppose that we getc values ofc1, c2, andc3

for the three operators respectively, given certain buffersizes for
B1 andB2. The overall cost is thusr(c1 + c2 + c3) for this query.

If we add a unit of memory toB1, c1 andc2 may be reduced to
c′1 andc′2 respectively, giving a new overall cost ofr(c′1 + c′2 + c3).
Alternatively, we could add a unit of memory toB2, at which point
c2 andc3 may be reduced toc′′2 andc′′3 respectively giving a new
overall cost ofr(c1 + c′′2 + c′′3 ). Whichever is the smaller cost is
the better choice of the two. If a better improvement is possible for
the same memory in another query, then that other query should get
the unit of memory.

In some cases, such as a simple aggregation of a base table, no
buffers are needed. It may appear tempting to let such an opera-
tor run for a very long time slice, since there is no memory cost.
However, in extreme cases such a choice could cause starvation for
other queries, and an absolute time-slice limit should be enforced.
An analogous choice would be needed if there was such an abun-
dance of memory that huge buffers were feasible.

5. RUNTIME SAMPLING
To handle arbitrary operators on arbitrary input, we need tomea-

sure cache misses for operators in a black-box fashion, without
knowledge of how they work. Fortunately, most modern platforms
provide a hardware-based mechanism to measure events such as
cache or TLB misses. On the UltraSPARC T1, the performance
counters may be accessed programatically by using the CPC counter
libary, which enables a per-thread measurement of cache misses
and other processor events. Accessing the performance counters
on the T1 via the CPC library results in a negligible performance
penalty and we use them only when necessary.

One thread is responsible for operator scheduling and the pro-
cessing of statistics. The remaining 31 threads do the real work.
When an operator is scheduled, we devote all 31 threads to process



the operator in parallel. As we have previously mentioned, this
choice allows all threads to effectively utilize the full shared cache,
rather than having to do independent work using a small fraction
of the cache. Additionally, this choice makes the performance of
the operator, including the sampled number of cache misses,more
predictable. Performance does not depend on what else mightbe
running on some of the threads.

We interrogate the performance counters just before and just af-
ter an operator call, in order to obtain the cache miss count for pro-
cessing a given number of records. The cache miss counts fromall
threads are accumulated together. These cache miss counts,when
divided by the number of tuples processed, correspond to thec cost
factor described in Section 4.

In practice, these numbers are obtained for the first few batches
of tuples in the actual running code. We start with an initialbuffer
of moderate sizeB. During the initial profiling, we run the operator
without pre-emption on successively larger segments of thebuffer,
calculating cumulative cache miss statistics along the way. That
way, in one pass through the buffer, we get performance statistics
not just for sizeB, but for a range of sizes smaller thanB.

As an example, consider the choice ofB whereB = 2k. We
start by sampling1, then2, then4, then8, up to2k−1 tuples at a
time, recording the number of cache misses for each batch. Inthe
ith iteration, alli− 1 iterations worth of tuples have "warmed" the
cache. After each iteration we compute an approximation of second
derivative of the number of cache misses per tuple processed. When
this gets close enough to zero (an empirically derived ’threshold’
that we compare against), we decide that the buffer is successfully
amortizing cache misses. We use the second derivative because
there are compulsory cache misses, such as reading input, which
means that the first derivative will likely be non-zero.

The system can compare the statistics for this operator withthose
for other running operators as described in Section 4. If thebuffer
is too large, it can be shrunk. The statistics allow the direct choice
of an appropriate buffer size. Because very small buffers lead to
many other context-switching overheads besides cache misses, we
impose a minimum buffer size for all operators.

If the buffer is too small, there are several ways that it could
grow. One could try to grow it incrementally in several steps,
gathering more statistics along the way, until an appropriate size
is reached. At the expense of temporarily using more memory,
one could allocate a much larger buffer of sizeB′, and accumulate
statistics as before for a range of buffer sizes betweenB andB′.
The incremental approach uses less memory, but may take longer
to converge.

In some cases, an operator’s initial performance may not be typ-
ical of its steady-state performance. For example, the adaptive ag-
gregation method of [3] starts out by sampling its input. We there-
fore allow an operator to set a “Wait-I’m-Changing” flag, to in-
form the cache-miss monitoring system to hold off from measuring
cache misses.3

6. EXPERIMENTAL RESULTS
We conducted all of our experiments on real hardware, a Sun

T1000 server with an UltraSPARC T1 processor. The operatorswe
investigated were hash aggregation and hash join. The specifica-
tions for our experimental platform, input distributions,and opera-
tor implementations can be found in Appendix A.

3This flag may appear to violate the “black box” methodology we
propose. One could alternatively wait a fixed time for startup over-
heads to have been paid, or to be more sophisticated and sense
when the operator appears to have reached a steady state.
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Figure 3: Execution time and measured L2 cache misses
for interleaved and non-interleaved (consecutive) aggregation
queries with various group-by cardinalities. There were8 ag-
gregation operators and224 uniformly distributed input tuples
to each operator.

6.1 Cache Effect of Interleaving Queries
The first experiments we ran aimed to expose the effect of inter-

leaving queries.224 (approx. 16 million) tuples were used as input
for batches of eight identical aggregation queries. With aninput
buffer size ofb tuples, the input was effectively processed in224/b
“slices”. 31 of the available 32 threads were dedicated to process-
ing a particular slice at once; one thread was used for scheduling
and synchronization.

In one series of experiments, the slices were processed consecu-
tively, i.e. all the slices of a single query were processed to the end
before moving on to the next query. In a second series, the slices
were interleaved so that after processing a slice from one query, a
slice from the next would be processed.

In the non-interleaved case, the cache-resident items fromwork
on a previous slice are available for work on the next slice. The
cache is “warm” at the start of the slice, unless the slice is the first
one in the query. In the interleaved case, the cache is likelyto be
“cold” for any single slice, because the intervening sliceswould
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Figure 4: Cumulative cache misses per tuple for the aggregation workload. Note the logarithmic scale in (a).

have caused the query’s data to be evicted from the cache. The
slicing overhead (synchronization etc.) is the same in eachsce-
nario. We measured both execution times and L2D cache misses
(using the T1’s CPC counters) in the experiments.

Figure 3(a) shows how execution time varies with the number of
slices for various group-by cardinalities. The group-by cardinality
determines the size of the hash table that the aggregation operator
needs to maintain. Additionally, the aggregation operatorinternally
uses different algorithms for different group-by cardinalities.

Figure 3(b) shows the corresponding measurements for the L2
data cache misses, which are strongly correlated with the execution
times. There is a baseline of 0.25 misses per tuple that comesfrom
scanning the input tuples, which each occupies 0.25 cache lines.
The remaining misses are for the aggregate operator’s hash tables.

The measurements for interleaved and non-interleaved queries
are nearly identical for large buffers. However, with decreasing
buffer size, the graphs show that the number of cache misses for
the interleaved queries increases significantly and the total execu-
tion time grows correspondingly. The cache misses and execution
time of the non-interleaved queries, in contrast, are relatively sta-
ble. The non-interleaved performance starts to worsen beyond a
buffer size of213 tuples due to context-switching overheads that
become significant. As a result, a minimum buffer size of213 tu-
ples would be appropriate.

A closer examination reveals that for group-by cardinalities that
are small (64) and large (528244), large buffers do not significantly
improve the cache miss profile or the overall performance. This ef-
fect is to be expected. For very small group-by cardinalities, even a
small buffer is enough to amortize the cache misses, since there are
so few of them. For very large group-by cardinalities, almost every
access will be a cache miss whether or not the input is buffered.

For the intermediate group-by cardinalities, the performance im-
pact of buffering is significant. For a group-by cardinalityof 1024,
changing a buffer from213 tuples to216 tuples halves the overall
execution time, and even larger buffers can be used to get an addi-
tional 25% improvement. For 1024 and fewer group-by values,the
adaptive aggregation operator chooses to employ a two-level hash-
ing scheme, with each thread having a small local hash table that
overflows into a large shared hash table. At 1024 group-by values,
specifically, it takes a relatively large number of accessesto bring
all of the local tuples into the cache and hence the benefit from a
larger buffer size.

The group-by cardinality of 32768 shows a case where the ag-
gregation algorithm uses a single shared hash table that just fits

within the L2 cache. Changing the buffer from213 tuples to216

tuples reduces the overall execution time by 20%. The group-by
cardinality of 65536 shows a case where the aggregation algorithm
uses a single shared hash table that just exceeds the L2 cachesize.
As a result, the number of cache misses per tuple is higher than the
32768 cardinality case.

Figure 4 presents the same data, interpreted cumulatively.The
graph shows how well the total number of cache misses incurred
up to a certain number of records is amortized over those records.
Figure 4(b) shows the initial region up to a buffer size of 60,000
records. The group-by cardinality of 64 quickly amortizes its rela-
tively small number of cache misses, and asymptotes to 0.25,which
is the number of misses required to process the input.

The group-by cardinality of 524,288 never manages to amortize
its relatively large number of cache misses. It asymptotes to 1.25,
which is the number of misses required to process the input and
one hash cell per input record. Intermediate cardinalitieshave in-
termediate behavior. The curves cross, because the aggregation op-
erator is employing different algorithms for the differentgroup-by
cardinalities. By 60,000 records, all operators are close to their
asymptotic number of cumulative misses per tuple.

In Figure 3(a), it appears that using 100 slices (with a buffer size
of about 160,000 records) allows the system to amortize almost
all of the cache miss penalty. Individual slices are taking between
10ms and 35ms. These are relatively small slices in terms of ab-
solute time, and will not cause scheduling delays for fast queries
waiting for slow queries to complete their allotted timeslices.

6.2 Variable Buffer Size
In a mixed workload, some queries might be more sensitive to

the buffer size than others. We experiment with a workload con-
taining ten aggregation queries having a group-by cardinality of
64, and ten queries with a group-by cardinality of 1024. As wesaw
in Figure 3, a query with 64 group-by values performs well even
with small buffers, while a query with 1024 group-by values can
benefit more from larger buffers.

It is clear from the previous experiments that, if memory is avail-
able, it could (and should) be used to improve temporal locality. In
Figure 5, we investigate the scenario where the total memorybud-
get is fixed; all that can be varied is how the memory is allocated
to the various operators. The black curves show the performance
of the mixed workload when interleaved and when not interleaved,
assuming an equal distribution of memory to all operators. The red
curves show an allocation in which the memory is preferentially
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allocated to the 1024 group-by value queries. In particular, the
64 group-by value queries each get buffers with 8192 records(the
minimum value, as discussed above). The remaining memory is
divided equally among the 1024 group-by value queries. Eachdata
point is plotted at the axis coordinate corresponding to theoverall
average buffer size, so that the points on the red and black curves
are comparable.

Allocating the memory non-uniformly makes a modest, but mea-
surable difference to overall performance, between 3.3% and 8.4%
in the range shown in Figure 5.

We experimented with the space allocation methods described
in Sections 4 and 5, in order to generate buffers whose size isap-
propriate to the locality displayed by the operator. As a baseline,
we used the default choice of allocating the available spaceequally
among all operators. The informed allocation performed better than
the default allocation, but typically by only a few percent.The 3%
to 8% results reported in Figure 5 above were among the best im-
provements generated.

The reason for this behavior is twofold: If all operators in the
workload need memory for locality, then an even allocation will
probably do a reasonably good job. If only some of the operators
need memory for locality, then it does pay to give those more mem-
ory. Nevertheless, Amdahl’s law means that the apparent benefit of
that memory is smaller, being “diluted” by the time spent on buffer-
size-insensitive work. The results of this section suggestthat equal
allocation performs well as a default allocation strategy,extra effort
yielding an improvement of only 8.4%.

An exception to this rule would be if ther values, i.e., the rate at
which tuples flow into an operator, is significantly different for dif-
ferent operators. Studying operators with differing (possibly vary-
ing) r values is left to future work.

6.3 Alternative Distributions
The locality of an operator can depend on its input distribution.

For example, if some of the group-by values of an aggregationop-
erator are very common, then there is more temporal localitythan a
uniformly distributed set of group-by values of the same cardinal-
ity. We ran the aggregation algorithm on the various distributions
described in [3], and measured the cache misses and performance
for various buffer sizes.

The results were in line with the expected changes in temporal
locality. Figure 6 shows the results for a self-similar distribution in
which, at every scale, 80% of the accesses go to 20% of the data
[6]. Note that the absolute performance is not directly compara-

ble to the performance for uniform data because the aggregation
operator is using different algorithms in each case [3]. Neverthe-
less, because of skew in the data access pattern, there is increased
temporal locality at all group-by sizes. This enhanced locality is
apparent in the gap between interleaved and non-interleaved per-
formance. At a group-by size of 1024, the gap is smaller than for
uniform, because there is less pressure on the cache. At a group-by
size of 528,244, the gap is larger than for uniform, because many
accesses that used to be cache misses (even with large buffers) are
now cache hits.

6.4 Joins
We also validated our observations on a hash join operator. A

hash join operator’s hash table represents a large amount ofstate,
similar to the hash table used for aggregation described earlier.

We constructed the hash join workload to be a foreign key joinin
which each tuple in the probe relation joins with one and onlyone
tuple in the build relation. The number of unique keys in the probe
input was varied in a manner analogous to the varied group-bycar-
dinalities used in the aforementioned aggregation experiments. The
build relation was always sized to exactly match the number of
unique keys in the probe input, containing each key once. There-
fore, the size of the hash table was directly related to the number of
unique keys in the probe input.

Based on the size of the hash table’s components, with a load
factor of .5, a hash table containing around 150,000 tuples will fit
within the L2 cache. Figure 7 shows execution time and cache miss
results for various hash join workloads. In these experiments, the
input contained different numbers of unique keys that were uni-
formly distributed.

The join experiments confirm the aggregation results. Figure 7(a)
shows that join performance suffers when smaller buffers (more
frequently interleaving) is used. This is particularly true for the in-
put distributions with hash tables that use a lot of the cache, but do
fit. Figure 7(b) shows that the 32768 and 65536 inputs for exam-
ple benefit from locality when accessing the hash table, but only if
enough tuples are processed so that a cache line can be reused. The
528244, conversely, has a hash table that does not fit in the cache,
so it experiences a high number of cache misses whether execution
is interleaved or not. In the case of aggregation with a groupby
cardinality of 64 or hash join input with only 64 unique keys,the
respective hash tables are so small that they fit within the L1cache
and L2 misses are almost exclusively caused by reading inputafter
the hash table is initially loaded into the cache.
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Figure 6: Execution time and cache misses on a self-similar
input distribution.

6.5 Finding Performance Bugs
During our initial experiments with the aggregation methodof

[3], we were surprised to find that there was a significant penalty to
interleaved computation, even when the group-by cardinality was
very high. This observation was unexpected, because at veryhigh
group-by cardinalities, almost all hash table references would be
cache misses, whether the operator is interleaved or not.

After some investigation, we realized that the aggregationmethod
in fact usedtwo data structures for aggregation. The keys and ag-
gregates were stored in hash table cells, while a set of “valid” flags
was stored in a separate array, one byte per flag, to identify whether
a hash cell stores any useful data. Even if this flag array fits into the
cache, the time-slicing of the aggregation operator means that the
flag array needed to be reloaded into the cache on every time slice.
We were able to overcome this performance problem by redesign-
ing the hash cell so that the valid flag was part of it, in a single
cache line, meaning that only one cache miss per cell is needed.

In [3], we did not notice a significant performance impact, be-
cause this flag array was small enough to easily fit in the cachein
most experiments. Nevertheless, the performance of aggregation
on examples so large that the flag array did not fit in the cache
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Figure 7: Execution time and cache misses for the hash join
workload with uniformly distributed probe input.

did suffer, because two cache misses were needed when one would
have been sufficient.

7. CONCLUSION
In main-memory databases and disk-based databases alike, cache

misses are a major performance issue. When a database systemis
processing many concurrent queries, each with many operators, it
will have to run each operator in some kind of time-sliced fashion.
If a database operator has state, such as a hash table, compulsory
cache misses will be encountered every time the operator resumes
processing in a new time-slice.

We have studied the cache miss behavior of database operations
with state, such as aggregations and joins. We have shown that
it is desirable to allocate large buffers, enough to hold 10,000 to
100,000 or more records, in order to amortize an operator’s cache
misses over many input records. In contrast to [14], which advo-
cates buffers of about 10KB for hash-based aggregate operators,
we show that buffers whose size is measured in megabytes can be
worthwhile. In some cases, these buffers reduce the time taken to
process a query bymore than a factor of two. We have shown how



one can instrument a system running on a multicore machine to
measure cache misses in real-time on the actual input data, without
knowing the algorithms or data structures employed by an oper-
ator. We have also shown how operators with intermediate-size
state have the most to gain from large buffers: small data structures
will become cache resident quickly, while very large data structures
without temporal locality will always generate cache misses, even
with buffering.

The disciplined use of buffers enables a database system to scale
the number of concurrently running query operators, while main-
taining a level of performance close to that obtained when each
operator is run in isolation.

In future work, we plan to consider grouping together consecu-
tive operators whose cache behavior is non-interfering into super-
operators, to allow better pipelining [20, 21]. For example, if we
had two consecutive joins with small build tables that together fit
in the cache, there is no reason to buffer between those operators.
A single larger buffer for the pair of operators would be better.
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APPENDIX

A. EXPERIMENTAL SETUP
We ran all experiments on a 1GHz Sun UltraSPARC T1 archi-

tecture, the details of which are summarized in Table 1. The T1
is a chip multiprocessor with 8 cores and 4 threads per core for a
total of 32 hardware thread contexts. It has a small 8KB L1 cache
for each core (i.e. shared amongst 4 threads) and a larger L2 cache
(3MB in our case) shared between all hardware threads. Its cache
line is 64 bytes. A large main memory (8GB) ensured that all the
data and processing were in-memory. The T1’s TLB supports mul-
tiple page sizes, and we forced the use of large, 256MB pages to
ensure that TLB misses did not affect our measurements.

Experiments were run using both a hash-based aggregation op-
erator and a hash join operator.

Processor 1 GHz UltraSPARC T1
Main Memory 8GB
L1 Instruction Cache 16KB/core
L1 Data Cache 8KB/core
L2 Data Cache 3MB
Hardware Threads 32
Cache Associativity 12
Data Cache Line Size 64

Table 1: Hardware Platform used for Experiments

Aggregation Implementation
The hash-based aggregation operator used in this paper is the multi-
threaded, adaptive aggregation method presented in [3]. Based on
lightweight sampling of the input, the operator chooses between
different hash-based aggregation options. When there is noin-
terthread contention or temporal locality in hash table accesses,
the adaptive operator chooses to use one global hash table shared
among all of the threads. This global table requires the use of a
mutex or atomic operations in order to protect concurrent aggregate
updates. When interthread contention or temporal localityis high,
the adaptive operator chooses a two-level aggregation method. In
this method, each thread has a small private hash table that will con-
tain contentious and frequently accessed items. This private table
spills excess entries into the global table described above. Finally,
the adaptive operator is able to detect input with runs of consecutive
keys which can be aggregated directly. This run-based aggregation
is not used in any of the experiments in this paper. The implementa-
tion of the adaptive aggregation operator is described in more detail
in [3].

Hash Join Implementation
The hash join implementation used in these experiments is similar
to the hash join described by Manegold et al. [11], in which ele-
ments that hash to the same location are chained together using an
array indexed by the record id of the element in the bucket. An
array entry contains the record id (or index) of the next record in
that bucket. Thus by following the chain of record ids, each record
in a hash bucket may be located. Chaining, however, is a relatively
rare occurrence because we sized the hash table to have an average
load factor of.5.

As input, the hash join takes two relations whose tuples are the
keys to be joined, and produces a join index as output. Because
writing the join index must to be done in parallel by multiplethreads,
concurrent output writing is accomplished using the parallel buffer
data structure described in [4]. The parallel buffer allowsmultiple

threads to read or write a shared buffer with minimal interthread
contention.

We study the performance of the probe phase of the join, once
the hash table on the smaller input has been built.

Input Characteristics
In a main-memory setting, the transfer of data between the RAM
and the cache is a precious resource. As a result, unnecessary or
redundant reading or copying of data is likely to perform poorly.
Such issues motivate the use of column-wise storage [10, 18,2],
so that only the required columns need to be read. Join algorithms
that build a join index and resolve the pointers in a final stage are
beneficial in a main-memory setting for similar reasons [12].

It is therefore appropriate to focus on situations in which the tu-
ples flowing between operators are relatively narrow. In ourevalu-
ation, they will be 8 or 16 bytes. In the event that wider tuples are
needed, the resulting extra cache misses could be partiallyhidden
using prefetching.

In all experiments the input contained224 tuples. For aggrega-
tion, the input tuples used were two 64-bit unsigned integers, so
each input tuple is 16 bytes long (or 0.25 cache lines). For the hash
join, the input tuples consisted of 64-bit keys, so each tuple is 8
bytes long (or 0.125 cache lines). The record-id of a key is simply
its position in the record sequence. The output join index consists
of tuples with two 32-bit record- ids, so each output tuple isalso 8
bytes long. The input distributions were generated using the tech-
niques described in [6].

Thread Coordination
Coordination between the scheduler thread and the workers is via
variables shared between each worker and the scheduler. When a
worker thread is launched, its shared “pending” flag is set tofalse.
Worker threads spin-wait for this flag to become true. The sched-
uler thread selects an operator to run by setting a shared variable
to point to the current operator as well as by specifying a range of
tuples for each thread to process. The scheduler thread starts the
worker threads by setting the pending flag to true. It also resets to
zero a counter shared by all worker threads. As each worker thread
completes its assigned task, the worker thread sets its pending flag
back to false and atomically increments the counter. The worker
thread then goes back to waiting for its pending flag to change.
In the mean time, the scheduler thread is waiting for the shared
counter to equal the number of worker threads, at which time it
knows that all threads have completed their assigned work and are
ready for the next operator assignment. While waiting for workers
to complete, the scheduler thread could perform preparatory work
for the next scheduling task, but such optimizations are left to fu-
ture work.

Scheduling of independent operators is done according to the
following heuristic: schedule the operator that has processed the
least input so far, excluding the operator that was run on thepre-
vious time-slice. When all operators have the same buffer size, a
round-robin schedule results. When there are mixed buffer sizes,
operators with smaller buffers will get scheduled more often than
those with larger buffers.


