Cache-Conscious Buffering
for Database Operators with State

John Cieslewicz William Mee Kenneth A. Ross*
Columbia University Columbia University Columbia University

johnc@cs.columbia.edu wjm2107@columbia.edu kar@cs.columbia.edu

ABSTRACT this paper examines the crucial higher-level question of tiffer-
ent operators interact with each other in the cache.

To motivate this problem, consider the following simple mxa
ple. A database has two operators, A and B, which it must run.
These operators may be from a single query, or from different
currently running queries. Each operator uses a relatiletye,
private data structure such as a hash table. If operator s d
structure fits within the cache, after processing enouglesijits
data structures will become cache resident and subsequeBsses
will be cache hits, which will result in faster processingneis for
t those tuples. If, however, operator B's execution is ie@red with

operator A's, then B’s data structure may evict A's from tlaelte.

This means that when A resumes processing, it will agairesuff

cache misses to load its data structure into the cache. Ifetwo

tuples are processed by each operator, neither operatoreaely

a point at which its data structure is cache resident. Eveuagth

the operators may have been designed to carefully use the oac

isolation, when their execution is interleaved neitherdfigs from

that careful design.

Our approach is to use large enough batches of work for each of

A and B so that the initial compulsory cache misses are apatti

over many input tuples. To batch the work, we insert buffate i

a query plan to hold a batch of intermediate results thatrgrets

to an operator. For nonblocking operators, we also insetiffeib

to hold the output from the operator. Each operator is sdeddio

Database processes must be cache-efficient to effectiviizeu
modern hardware. In this paper, we analyze the importance of
temporal locality and the resultant cache behavior in scliregl
database operators for in-memory, block oriented querggas
ing. We demonstrate how the overall performance of a wotkloa
of multiple database operators is strongly dependent onthew
are interleaved with each other. Longer time slices contbimith
temporal locality within an operator amortize the effedtthe ini-

tial compulsory cache misses needed to load the operatatis, s
such as a hash table, into the cache. Though running an operal
to completion over all of its input results in the greatesbeina-
tion of cache misses, this is typically infeasible becadskelarge
intermediate storage requirement to materialize all inpptes to
an operator. We show experimentally that good cache pediocm
can be obtained with smaller buffers whose size is deteminaie
runtime. We demonstrate a low-overhead method of runtimbkeca
miss sampling using hardware performance counters. Oluava
tion considers two common database operators with stateega-
tion and hash join. Sampling reveals operator temporalitgand
cache miss behavior, and we use those characteristics tselam
appropriate input buffer/block size. The calculated husiee bal-
ances cache miss amortization with buffer memory requirésne

1. INTRODUCTION that it processes its entire input buffer in a single batch.
As the cost per byte of random-access memory continues to de- e use hardware performance counters in an on-line fashion t
cline, large database operations may be performed eritiretgin- measure the number of cache misses suffered by an operatsr. T

memory. It has been observed that relatively high latencgsses ~ Choice gives the system accurate numbers with negligitsensad
to main memory account for a significant portion of in-memory and without needing to know how an operator works. The system
database query processing time [1]. Much research hasddcus Calculates space/time trade-off curves of each operattreirsys-
on improving the cache behavior of specific database opesti tem. Thls.curve is Qfgrlved from the L2 data cache miss courts m
e.g., hash join, aggregation, partitioning, index maiatere and sured during the initial runs of the operator. Based on tbhasees,
traversal, etc. (see the discussion of related work in Sed). the system can estimate the payoff for increasing (or deirgh
Rather than improving the cache behavior of a specific ojperat the buffer size for each operator.)

On a multi-core system, we adopt the approach that all dleila

*This research was supported by the National Science Fdondat ~threads should be devoted to a single operator during asiioe;
under Grant 11S-0534389 and by a United States Department of SO that all threads can share common data structure elemehts
Homeland Security Graduate Research Fellowship. cache and effectively utilize the full shared L2 cache araith
struction caches. If we allowed each thread to perform iaddpnt
work, then there would be much less effective cache perdheeal
Permission to make digital or hard copies of all or part of tiwork for cache interference would be much more likely [19].
personal or classroom use is granted without fee providatidbpies are We experimentally evaluate our system using a Sun UltraSPAR
not made or distributed for profit or commercial advantage that copies T1 machine that ha& on-chip hardware thread contexts. We study
bear thiS notice and the full citation on th‘e first page. Twonm_erwise,_tp the two most common database operators with state, namgig-ag
republish, to post on servers or to redistribute to listguies prior specific gation and joins. We show that operator interleaving carertizan

permission and/or a fee. . - . . .
Proceedings of the Fifth International Workshop on Data Management on double the execution time when compared with a plan in which

New Hardware (DaMoN 2009) June 28, 2009, Providence, Rhode Island. operators are not interleaved. We demonstrate the impatah
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

identifying operators with state that fits in the cache arahtpbro-
cessing enough tuples with those operators in order to @adhe
cost of loading that state into the cache. When memory igifilén
large buffers between operators give good performancewbah
memory is limited, more buffer space should be allocatethdsé
operators that benefit the most from temporal locality ireases to
their state. Further, we show that in a mixed operator enuient
where total buffer space is limited, allocating buffer sphased on
measured cache miss characteristics of operators canireadbs
to 8% improvement over a naive allocation of buffer space.

2. RELATED WORK

Alarge body of related work has sought to make specific datba

operations cache conscious in order to improve performéyce
minimizing the processor to memory bottleneck. Examplethisf
approach include making data structures more cache-@arssbiy

cache misses

time

Figure 1. Cache Miss Patterns — the total cache misses suf-

designing them to be either more compact or otherwise harnes féred are a combination of the cache misses of the constituen

temporal or spatial locality [15, 16, 11, 3, 5, 9].

Processing data in batches to improve cache behavior ispedp
by Padmanabhan et al. [14]. Their study did not explicitlgsider
interleaving of operators, and the size of their aggregpézaior’s

state was typically small enough to fit in the L1 data cache.aAs

result, their optimal block size was small, about half thee gif the

subprocesses. In this example, these level out soon (A), s®m
what later (B) or remain constant (C).

shows this concept of the aggregation of individual pattehn this
figure, pattermd might represent a small data structure, pattera

L1 data cache. Padmanabhan et al. demonstrate that such mem@rger data structure that still fits in the cache, and pattea data

ory optimizations make a difference even in a disk-basedbdate
system.

Buffering between operators in a query plan to reduce instm
cache misses was proposed by [21], but the question of mgdftr
reduce cache misses for operators with state is not addrdssan

OLTP workload where there may not be enough tuples within one

plan to make buffering work, instruction cache misses adaced
by context switching between different transactions ireottd run
a different transaction over the same instructions [7].hia paper
our focus is on data cache misses for OLAP workloads.

Within one operation, buffering has been used to amortizhea
misses incurred when loading state, such as a portion ofdaxin
In [20], accesses to memory resident tree-based indexstescare
buffered at various points in the index. In this paper, welyapp
similar concept of buffering to entire operators in a qudanpvith-
out requiring explicit knowledge of their data structuresm@mory
access patterns.

The question of allocating memory within database systesss

also been studied. For instance, Nag and DeWitt examine mem-

ory allocation for decision support queries in environrsenhere
memory is constrained [13]. Our focus is on in-memory queoy p
cessing and the specific problem of interquery buffer atiooeto
improve data cache performance for operators with state.

3. BACKGROUND

The total number of cache misses suffered by any one databas
operator is the aggregate of the cache misses caused byfatech o

memory-intensive subprocesses. A database operator iglsort-
ing tuples, for instance, would read input, perform the §oossi-
bly by accessing an index tree structure) and write outpyically
these subprocesses each access specific data structutbesaex-
hibit individual cache miss patterns. Some of these sulgsssEs,
such as sequential input scans, have little or no data tgcafid the
rate at which they generate cache misses is more or lessaintvar
with time. Other subprocesses will display a decrease irrdtee
of new cache misses as a cache-resident working set isisbtzbl
and the cache becomes “warm.” Examples of this latter paiter
clude tree traversal and cache-resident nested-loop jigsire 1

structure (such as a scanned input array) with no tempazalitg.

In order to provide fair access for all operators, each wdad
given some processor time in turn in the form of a “time slicEfiis
interleaving of the operators ensures that none of themtareesl
of processor time, and the average latency is acceptabléongs
as the time slice is not too large, scheduling algorithmshedance
latency and throughput in various ways [17, 8]. Operatirgjeays,
for example, commonly use a time-slice of 10-100ms [17].

In this paper, we will be dealing with smaller-scale timees
for database operators with a somewhat different goal irdmin
particular, if our database operator exhibits some tenipacality,
asin curvesA andB in Figure 1, there is an incentive to run it using
time-slices that are long enough to amortize the cache msss
a larger number of records. In modern architectures, datheca
misses are expensive and a primary performance bottlenkck.
the time-slice is too small, these misses will be incurregiragnd
again; the operator will not benefit from a warm cache. Théaeac

h access pattern of an operator may depend on its input; ieigth

fore important to be able to determine a time-slice taildeethe
cache behavior of each operator instance, rather thaniagaogpt
one-size-fits-all approach.

4. QUERY PROCESSING MODEL

We do not propose any structural changes to the query ogtimiz
tion process. A query is supplied to the query optimizer, apthn

%s generated in the conventional manhduffers are inserted be-

ore operators with state such as joins and aggregatioasashion
similar to [21]. Buffers are also added after such operatdrsn
those operators are nonblocking.

In a running system, there may be many buffers active at one
time. A single query may employ many buffers, and many gserie
may be running concurrently. For each buffer, we measure the
number of cache misses per tupleising hardware performance
counters. To compare the relative benefit of extra memorgifer
ferent buffers, we need to multiptyby the rate at which tuples are

LIt may be appropriate to modify the cost functions of certan
erators to take account of the reduced cache misses prdvydibe
present work.

generated per unit time, The productr has units of cache misses
per unit time.

It is relatively easy to calculate by measuring how much time
it takes for a buffer to fill. In a practical system,will vary due
to (a) changes in the phase of the query plan, such as a ioansit
from the build phase to the probe phase of a hash join, andhéb) t
admission of new queries and the completion of existingigeer
Exactly how one would respond to changes is a complex ques-
tion. Responding to every fluctuation may introduce ovedhas
buffers are repeatedly enlarged and shrunk. On the othet; igin
noring changes im altogether would lead to suboptimal memory
allocation in changing workloads. We leave the questionaw h
to respond to changes into future work. For this paper, we will
assume that r is fixed and equal for each active buffer.

Consider, for example, a query that performs a sequencea-of fo
eign key hash joins between a fact probe tablend dimension
build tablesD; and D, followed by an aggregation. The net rate
at which tuples flow into each of the three operators (twog@ind
an aggregation) is the same, meaning that they each haviklyoug
the same value of 2

For the initial join betweerF’ and D there is no input buffer
needed becausE is a base relation. An output buffé?; is re-
quired, which also functions as the input buffer for the juiith
D. The output buffer from this joinB., is the input buffer for the
aggregation. The flow of data is summarized in Figure 2.

(-
Hash
@ble

Hash
Aqgg.

Buffer B, =

HaSh
Buffer B, = JOin
probe
T Nyuild
Hash — I:)2
Join Eﬂ

\ build
Dl

probe ’
F

Figure 2: A query plan with buffers.

The per-tuple performance (measuredcaove) of the initial
join will depend on the size aB;, and how well this buffer amor-
tizes the cost of reading the hash tableon. The performance
of the second join will depend on the size of the two bufferee T
smaller buffer will be the tighter constraint on how manyaténs
of the operator are possible during a single batch. This murab
iterations should (hopefully) amortize the cost of readimg hash
table onD,. The performance of the aggregation will depend on
the size of B, and how well this buffer amortizes the cost of ac-
cessing the hash table of group-by keys and values.

There are some subtleties caused by the fact that the outfieit b

2The instantaneous rate at which operators consume andior pr
duce tuples may vary. However, an operator that runs fabthveih
have to wait longer for its input buffer to fill or for its outphuffer

to empty.

of one operator is the input of the next. For example, Ehegjoin
may consume part of its input buffé;, filling B.. If the initial
join were to be run now, it would have only a fractionBf avail-
able, and would not fully amortize its cache misses. Instézel
aggregation should be run to empBg, and then theD; join run
again to drain more tuples frof; . The following simple heuristic
achieves good scheduling behavior for chains of operators.

Let B1,..., B, ben buffers in a chain, and led,, ..., O, be
operators such thaD; consumes input fronB;, ¢ = 1,...,n,
and O; outputs data tdB;y1,¢ = 0,...,n — 1. We callOy the
source operator, and),, thesink operator. We say an operator,
is available for scheduling if its input buffer (if it exists) is at least
half full, and its output buffer (if it exists) is at least haimpty.

LEMMA 1. Inany chain of buffered operators, there always ex-
ists an operator that is available for scheduling.

PrROOF If Og isnot available, then B, must be more than half
full. By induction, if O; is not available then B;;1 must be more
than half full, for: = 1,...,n— 1. Butif B,, ismorethan half full,
O, isavailable. [

As a result of Lemma 1, it is always possible to order the op-
erators so that each is run when it has substantial inpulainei
and substantial output space available. That way, the kmteh
will always be relatively large, and operators will not neecbe
interrupted frequently because the input is exhaustedkiyuic the
output fills up quickly.

For a worst-case analysis, one can estimate: traue for each
operator by assuming that half its input buffer and half ittpat
buffer is available. Suppose that we getalues ofci, c2, andcs
for the three operators respectively, given certain busfees for
B: andB.. The overall cost is thus(cq + c2 + ¢3) for this query.

If we add a unit of memory td;, ¢; andcz may be reduced to
¢y andc, respectively, giving a new overall costwfc] + 5 + ¢3).
Alternatively, we could add a unit of memory 8, at which point
c2 andcs may be reduced tey andch respectively giving a new
overall cost ofr(c1 + ¢4 + ¢4). Whichever is the smaller cost is
the better choice of the two. If a better improvement is gaedor
the same memory in another query, then that other querydigetl
the unit of memory.

In some cases, such as a simple aggregation of a base table, no
buffers are needed. It may appear tempting to let such araeper
tor run for a very long time slice, since there is no memoryt.cos
However, in extreme cases such a choice could cause starvati
other queries, and an absolute time-slice limit should bBereed.

An analogous choice would be needed if there was such an abun-
dance of memory that huge buffers were feasible.

5. RUNTIME SAMPLING

To handle arbitrary operators on arbitrary input, we needea-
sure cache misses for operators in a black-box fashion,oufith
knowledge of how they work. Fortunately, most modern plaf®
provide a hardware-based mechanism to measure events such a
cache or TLB misses. On the UltraSPARC T1, the performance
counters may be accessed programatically by using the ClR@ezo
libary, which enables a per-thread measurement of cacheemis
and other processor events. Accessing the performanceersun
on the T1 via the CPC library results in a negligible perfoncea
penalty and we use them only when necessary.

One thread is responsible for operator scheduling and the pr
cessing of statistics. The remaining 31 threads do the regt.w
When an operator is scheduled, we devote all 31 threads tegso

the operator in parallel. As we have previously mentionéds t
choice allows all threads to effectively utilize the fullsskd cache,
rather than having to do independent work using a smallifract
of the cache. Additionally, this choice makes the perforoeaof
the operator, including the sampled number of cache misse®
predictable. Performance does not depend on what else tmight
running on some of the threads.

We interrogate the performance counters just before andfus
ter an operator call, in order to obtain the cache miss caurirb-
cessing a given number of records. The cache miss countsalfom
threads are accumulated together. These cache miss cotnets,
divided by the number of tuples processed, correspond totbst
factor described in Section 4.

In practice, these numbers are obtained for the first fewhiestc
of tuples in the actual running code. We start with an initiaffer
of moderate sizé. During the initial profiling, we run the operator
without pre-emption on successively larger segments obtifier,
calculating cumulative cache miss statistics along the. wilyat
way, in one pass through the buffer, we get performancesstati
not just for sizeB, but for a range of sizes smaller th&h

As an example, consider the choice Bfwhere B = 2. We
start by sampling, then2, then4, thens, up to2*~! tuples at a
time, recording the number of cache misses for each batctheln
it" iteration, alli — 1 iterations worth of tuples have "warmed" the
cache. After each iteration we compute an approximatioecdisd
derivative of the number of cache misses per tuple proce¥ghdn
this gets close enough to zero (an empirically derived &hoéd’
that we compare against), we decide that the buffer is sefids
amortizing cache misses. We use the second derivative $ecau
there are compulsory cache misses, such as reading inpigh wh
means that the first derivative will likely be non-zero.

The system can compare the statistics for this operatorthaite
for other running operators as described in Section 4. Ibtiféer
is too large, it can be shrunk. The statistics allow the dickoice
of an appropriate buffer size. Because very small buffead ke
many other context-switching overheads besides cachemiaz
impose a minimum buffer size for all operators.

If the buffer is too small, there are several ways that it doul
grow. One could try to grow it incrementally in several steps
gathering more statistics along the way, until an approprize

is reached. At the expense of temporarily using more memory,

one could allocate a much larger buffer of sizg and accumulate
statistics as before for a range of buffer sizes betwBesnd B’.
The incremental approach uses less memory, but may takerlong
to converge.

In some cases, an operator’s initial performance may nogbe t
ical of its steady-state performance. For example, thetagopg-
gregation method of [3] starts out by sampling its input. Were-
fore allow an operator to set a “Wait-I'm-Changing” flag, 1@ i
form the cache-miss monitoring system to hold off from measu
cache misses.

6. EXPERIMENTAL RESULTS

We conducted all of our experiments on real hardware, a Sun

T1000 server with an UltraSPARC T1 processor. The operaters
investigated were hash aggregation and hash join. Thefiggeci
tions for our experimental platform, input distributioasd opera-

tor implementations can be found in Appendix A.

3This flag may appear to violate the “black box” methodology we
propose. One could alternatively wait a fixed time for staxuer-

Buffer Size (tuples)

1e+07 1le+06 100000 10000
4500
4000
é 3500 i
) 3000
£
i~ 25007
- L
S 2000
3
8 1500
X
w 1000
500
0
1 10 100 1000 10000
Number of Slices
(a) Execution time
Buffer Size (tuples)
le+07 le+06 100000 10000
Q
(=N
2
@
o
%]
[}
9]
i)
=
N
-
0.2
0
1 10 100 1000 10000

Number of Slices

32768 interleaved——
65536 consecutive—=—
65536 interleaved——

1024 interleaved 528244 consecutive—=—
32768 consecutive—=— 528244 interleaved——

(b) Cache Misses

64 consecutive
64 interleaved
1024 consecutive

Figure 3: Execution time and measured L2 cache misses

for interleaved and non-interleaved (consecutive) aggredion

queries with various group-by cardinalities. There were8 ag-
gregation operators and2?* uniformly distributed input tuples

to each operator.

6.1 Cache Effect of Interleaving Queries

The first experiments we ran aimed to expose the effect af-inte
leaving queries2* (approx. 16 million) tuples were used as input

for batches of eight identical aggregation queries. Withrgmut

buffer size ofb tuples, the input was effectively processe@¥h/b
“slices”. 31 of the available 32 threads were dedicated ¢cess-
ing a particular slice at once; one thread was used for stingdu
and synchronization.

In one series of experiments, the slices were processeé@ons
tively, i.e. all the slices of a single query were processeithé end
before moving on to the next query. In a second series, thessli

were interleaved so that after processing a slice from oeeyga

slice from the next would be processed.

In the non-interleaved case, the cache-resident itemsrork
on a previous slice are available for work on the next slicee T
cache is “warm” at the start of the slice, unless the slichésfirst

heads to have been paid, or to be more sophisticated and sens@ne in the query. In the interleaved case, the cache is ltkehe

when the operator appears to have reached a steady state.

“cold” for any single slice, because the intervening slieexild

Group By = 64
Group By = 1024
Group By =8192——

Group By = 32768—
Group By = 65536———
Group By = 524288——

Cumulative L2 Misses per tuple processed

o P N W M OO0 O N 0 ©

10 100 1000 10000 100000 1e+06 1e+07 1e+08

Number of tuples processed
(a) Total

0.6

0.4

0.2

Cumulative L2 Misses per tuple processed

0
0 10000 20000 30000 40000 50000 60000
Number of tuples processed

(b) Detail

Figure 4: Cumulative cache misses per tuple for the aggregain workload. Note the logarithmic scale in (a).

have caused the query’s data to be evicted from the cache. Thewithin the L2 cache. Changing the buffer fromh® tuples to2'¢

slicing overhead (synchronization etc.) is the same in eaeh

tuples reduces the overall execution time by 20%. The glyup-

nario. We measured both execution times and L2D cache missescardinality of 65536 shows a case where the aggregatiomitiigo

(using the T1's CPC counters) in the experiments.

Figure 3(a) shows how execution time varies with the number o
slices for various group-by cardinalities. The group-bgdazality
determines the size of the hash table that the aggregatienatop
needs to maintain. Additionally, the aggregation operit@rnally
uses different algorithms for different group-by cardities.

uses a single shared hash table that just exceeds the L2siaehe
As a result, the number of cache misses per tuple is highertkiga
32768 cardinality case.

Figure 4 presents the same data, interpreted cumulatiéig.
graph shows how well the total number of cache misses indurre
up to a certain number of records is amortized over thosedesco

Figure 3(b) shows the corresponding measurements for the L2 Figure 4(b) shows the initial region up to a buffer size of0RD,

data cache misses, which are strongly correlated with teeution
times. There is a baseline of 0.25 misses per tuple that ctoras
scanning the input tuples, which each occupies 0.25 caoks.li
The remaining misses are for the aggregate operator’s hbkst

The measurements for interleaved and non-interleavedeguer
are nearly identical for large buffers. However, with desiag
buffer size, the graphs show that the number of cache misses f
the interleaved queries increases significantly and tts éoxtecu-
tion time grows correspondingly. The cache misses and &recu
time of the non-interleaved queries, in contrast, are ixgligt sta-
ble. The non-interleaved performance starts to worsenrizeyo
buffer size of2'3 tuples due to context-switching overheads that
become significant. As a result, a minimum buffer siz@of tu-
ples would be appropriate.

A closer examination reveals that for group-by cardinadithat
are small (64) and large (528244), large buffers do not Bagmitly
improve the cache miss profile or the overall performancés &h
fectis to be expected. For very small group-by cardinajtexen a
small buffer is enough to amortize the cache misses, simce Hre
so few of them. For very large group-by cardinalities, altevery
access will be a cache miss whether or not the input is buffere

For the intermediate group-by cardinalities, the perfarceaim-
pact of buffering is significant. For a group-by cardinatify1024,
changing a buffer fron2'® tuples t02'¢ tuples halves the overall
execution time, and even larger buffers can be used to geldin a
tional 25% improvement. For 1024 and fewer group-by valthes,
adaptive aggregation operator chooses to employ a twbHess-
ing scheme, with each thread having a small local hash table t
overflows into a large shared hash table. At 1024 group-hyegl
specifically, it takes a relatively large number of accesed®ing
all of the local tuples into the cache and hence the benefit flo
larger buffer size.

records. The group-by cardinality of 64 quickly amortizessrela-
tively small number of cache misses, and asymptotes to @126h
is the number of misses required to process the input.

The group-by cardinality of 524,288 never manages to ag®rti
its relatively large number of cache misses. It asymptaiek25,
which is the number of misses required to process the inpadit an
one hash cell per input record. Intermediate cardinalliege in-
termediate behavior. The curves cross, because the atjgregp-
erator is employing different algorithms for the differgmoup-by
cardinalities. By 60,000 records, all operators are clasthéir
asymptotic number of cumulative misses per tuple.

In Figure 3(a), it appears that using 100 slices (with a lougize
of about 160,000 records) allows the system to amortize stimo
all of the cache miss penalty. Individual slices are takiegueen
10ms and 35ms. These are relatively small slices in term&-of a
solute time, and will not cause scheduling delays for fastrigs
waiting for slow queries to complete their allotted timess.

6.2 Variable Buffer Size

In a mixed workload, some queries might be more sensitive to
the buffer size than others. We experiment with a workloaa+ co
taining ten aggregation queries having a group-by caridjnaf
64, and ten queries with a group-by cardinality of 1024. Asaw
in Figure 3, a query with 64 group-by values performs wellreve
with small buffers, while a query with 1024 group-by valuesic
benefit more from larger buffers.

Itis clear from the previous experiments that, if memorysila
able, it could (and should) be used to improve temporal itycah
Figure 5, we investigate the scenario where the total mernady
get is fixed; all that can be varied is how the memory is alledat
to the various operators. The black curves show the perfcena
of the mixed workload when interleaved and when not intedea

The group-by cardinality of 32768 shows a case where the ag- assuming an equal distribution of memory to all operatote fed

gregation algorithm uses a single shared hash table thafifsis

curves show an allocation in which the memory is preferéintia

Buffer Size (tuples)

Buffer Size (tuples)

le+07 1e+06 100000 10000 le+07 1le+06 100000 10000
10000 consecutive—&— L2 equal (consecutive)—e—
interleaved —— equal (interleaved)——
@ 8000 consecutive—&— o 1 variable (consecutive)—=—
e interleaved —— =1 variable (interleaved)——
~ p=}
) b 0.8
.'g 6000 g
c 2 0.6
g 2
E 4000 £ 04
9 — - - .
X N
| = E
2000 0.2
0 0
1 10 100 1000 10000 1 10 100 1000 10000

Number of Slices
(a) Execution time

Number of Slices
(b) Cache misses

Figure 5: Execution time and cache misses, mixed workload.

allocated to the 1024 group-by value queries. In particulze
64 group-by value queries each get buffers with 8192 recfthds

ble to the performance for uniform data because the aggoegat
operator is using different algorithms in each case [3]. d\ihe-

minimum value, as discussed above). The remaining memory is less, because of skew in the data access pattern, theredased

divided equally among the 1024 group-by value queries. Eath
point is plotted at the axis coordinate corresponding tootrerall
average buffer size, so that the points on the red and blatlesu
are comparable.

Allocating the memory non-uniformly makes a modest, but-mea
surable difference to overall performance, between 3.3&8a40
in the range shown in Figure 5.

We experimented with the space allocation methods destribe
in Sections 4 and 5, in order to generate buffers whose siap-is
propriate to the locality displayed by the operator. As eebas,
we used the default choice of allocating the available spgcally
among all operators. The informed allocation performetebétan
the default allocation, but typically by only a few percefhe 3%
to 8% results reported in Figure 5 above were among the best im
provements generated.

The reason for this behavior is twofold: If all operators le t
workload need memory for locality, then an even allocatidhh w
probably do a reasonably good job. If only some of the opesato
need memory for locality, then it does pay to give those mazenm
ory. Nevertheless, Amdahl’'s law means that the appareraftherf
that memory is smaller, being “diluted” by the time spent affédr-
size-insensitive work. The results of this section sugtiestequal
allocation performs well as a default allocation strateyyra effort
yielding an improvement of only 8.4%.

An exception to this rule would be if thevalues, i.e., the rate at
which tuples flow into an operator, is significantly diffetéor dif-
ferent operators. Studying operators with differing (fildysvary-
ing) r values is left to future work.

6.3 Alternative Distributions

The locality of an operator can depend on its input distigut
For example, if some of the group-by values of an aggregatmn
erator are very common, then there is more temporal lodhlity a
uniformly distributed set of group-by values of the samedizaai-
ity. We ran the aggregation algorithm on the various distiins
described in [3], and measured the cache misses and perfcema
for various buffer sizes.

The results were in line with the expected changes in tenhpora
locality. Figure 6 shows the results for a self-similar disition in

temporal locality at all group-by sizes. This enhanced libcés
apparent in the gap between interleaved and non-intedepse
formance. At a group-by size of 1024, the gap is smaller tioan f
uniform, because there is less pressure on the cache. Atp-o50
size of 528,244, the gap is larger than for uniform, becauaeym
accesses that used to be cache misses (even with largespatfer
now cache hits.

6.4 Joins

We also validated our observations on a hash join operator. A
hash join operator’'s hash table represents a large amostatef,
similar to the hash table used for aggregation describdiear

We constructed the hash join workload to be a foreign keyijoin
which each tuple in the probe relation joins with one and amg
tuple in the build relation. The number of unique keys in thaebe
input was varied in a manner analogous to the varied grougaby
dinalities used in the aforementioned aggregation exparisa The
build relation was always sized to exactly match the number o
unique keys in the probe input, containing each key oncereFhe
fore, the size of the hash table was directly related to timelar of
unique keys in the probe input.

Based on the size of the hash table’'s components, with a load
factor of .5, a hash table containing around 150,000 tuples will fit
within the L2 cache. Figure 7 shows execution time and cadhs m
results for various hash join workloads. In these experisighe
input contained different numbers of unique keys that werie u
formly distributed.

The join experiments confirm the aggregation results. Eig(a)
shows that join performance suffers when smaller buffersrém
frequently interleaving) is used. This is particularlyarior the in-
put distributions with hash tables that use a lot of the calohedo
fit. Figure 7(b) shows that the 32768 and 65536 inputs for exam
ple benefit from locality when accessing the hash table, biytié
enough tuples are processed so that a cache line can be.rétsed
528244, conversely, has a hash table that does not fit in treeca
so it experiences a high number of cache misses whetherte@cu
is interleaved or not. In the case of aggregation with a grhoyp
cardinality of 64 or hash join input with only 64 unique ketise
respective hash tables are so small that they fit within thedche

which, at every scale, 80% of the accesses go to 20% of the dataand L2 misses are almost exclusively caused by reading aftart

[6]. Note that the absolute performance is not directly carap

the hash table is initially loaded into the cache.

Buffer Size (tuples)

1le+07 1e+06 100000 10000
w
E
()
£
'_
c
i)
5
o
Q
X
i
0
1 10 100 1000 10000
Number of Slices
(a) Execution time
Buffer Size (tuples)
le+07 1le+06 100000 10000
Q@
o
2
@
o
1%}
[0]
(2]
)
=
[qV)
—
0
1 10 100 1000 10000

Number of Slices

32768 interleaved——
65536 consecutive—=—
65536 interleaved——

1024 interleaved 528244 consecutive—=—
32768 consecutive—=— 528244 interleaved——

(b) Cache misses

64 consecutive
64 interleaved
1024 consecutive

Figure 6: Execution time and cache misses on a self-similar
input distribution.

6.5 Finding Performance Bugs

During our initial experiments with the aggregation mettofd
[3], we were surprised to find that there was a significant igta
interleaved computation, even when the group-by cardinalas
very high. This observation was unexpected, because athigiy
group-by cardinalities, almost all hash table referencesldvbe
cache misses, whether the operator is interleaved or not.

After some investigation, we realized that the aggregatiethod
in fact usedwo data structures for aggregation. The keys and ag-
gregates were stored in hash table cells, while a set ofdVfiigs
was stored in a separate array, one byte per flag, to identiétver
a hash cell stores any useful data. Even if this flag arraynfitsthe
cache, the time-slicing of the aggregation operator meaatsthe
flag array needed to be reloaded into the cache on every ticee sl
We were able to overcome this performance problem by redesig
ing the hash cell so that the valid flag was part of it, in a €ngl
cache line, meaning that only one cache miss per cell is deede

In [3], we did not notice a significant performance impact, be
cause this flag array was small enough to easily fit in the cache
most experiments. Nevertheless, the performance of aaftipeg

Buffer Size (tuples)

1e+07 1le+06 100000 10000
4500
4000
é 3500
) 3000
£
i~ 25001
c
S 2000
3
8 1500
X
w 1000
500
0
1 10 100 1000 10000
Number of Slices
(a) Execution time
Buffer Size (tuples)
1e+07 1e+06 100000 10000
Q
(=N
2
@
o
%]
&
o 06
=
N 04
0.2
0
1 10 100 1000 10000

Number of Slices

64 consecutive

64 interleaved
32768 consecutive
32768 interleaved
65536 consecutive—&—

65536 interleaved——
131072 consecutive—&—
131072 interleaved——
524288 consecutive—=—
524288 interleaved——

(b) Cache misses

Figure 7: Execution time and cache misses for the hash join
workload with uniformly distributed probe input.

did suffer, because two cache misses were needed when ot wou
have been sufficient.

7. CONCLUSION

In main-memory databases and disk-based databases atike, ¢
misses are a major performance issue. When a database system
processing many concurrent queries, each with many opseréto
will have to run each operator in some kind of time-slicedhias.

If a database operator has state, such as a hash table, sonypul
cache misses will be encountered every time the operatomes
processing in a new time-slice.

We have studied the cache miss behavior of database operatio
with state, such as aggregations and joins. We have shown tha
it is desirable to allocate large buffers, enough to holdQ0,to
100,000 or more records, in order to amortize an operatacbe
misses over many input records. In contrast to [14], whicload
cates buffers of about 10KB for hash-based aggregate opgrat
we show that buffers whose size is measured in megabytesecan b
worthwhile. In some cases, these buffers reduce the timentak

on examples so large that the flag array did not fit in the cache process a query byore than a factor of two. We have shown how

relational database operations in modern computer
architectures. INCDE, pages 567-574, 2001.
[15] Jun Rao and Kenneth A. Ross. Cache conscious indexing fo

one can instrument a system running on a multicore machine to
measure cache misses in real-time on the actual input déteut/
knowing the algorithms or data structures employed by am-ope

ator. We have also shown how operators with intermediae-si
state have the most to gain from large buffers: small datetstres
will become cache resident quickly, while very large datacttires
without temporal locality will always generate cache missven
with buffering.

The disciplined use of buffers enables a database systeral® s
the number of concurrently running query operators, whifmm
taining a level of performance close to that obtained wheshea
operator is run in isolation.

In future work, we plan to consider grouping together consec
tive operators whose cache behavior is non-interfering soiper-
operators, to allow better pipelining [20, 21]. For exampleve
had two consecutive joins with small build tables that tbgeffit
in the cache, there is no reason to buffer between thosetopera
A single larger buffer for the pair of operators would be éett

8. REFERENCES

[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and
David A. Wood. DBMSs on a modern processor: Where
does time go? IVLDB, pages 266—277, 1999.

[2] Peter A. Boncz and Martin L. Kersten. Mil primitives for
querying a fragmented world@he VLDB Journal,
8(2):101-119, 1999.

[3] John Cieslewicz and Kenneth A. Ross. Adaptive aggregati
on chip multiprocessors. MLDB, pages 339-350, 2007.

[4] John Cieslewicz, Kenneth A. Ross, and loannis Gianniakak
Parallel buffers for chip multiprocessors.DaMoN, pages
1-10, 2007.

[5] Amol Ghoting, Gregory Buehrer, Srinivasan Parthadarat
Daehyun Kim, Anthony Nguyen, Yen-Kuang Chen, and

Pradeep Dubey. Cache-conscious frequent pattern mining on

a modern processor. MLDB, pages 577-588, 2005.

[6] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken
Baclawski, and Peter J. Weinberger. Quickly generating
billion-record synthetic databases.#GMOD, pages
243-252, 1994.

[7] Stavros Harizopoulos and Anastassia Ailamaki. Impngvi
instruction cache performance in OLTACM Trans.
Database Syst., 31(3):887-920, 2006.

[8] D. Karger, C. Stein, and Joel Wein. Scheduling algorghm
In M. J. Atallah, editorHandbook of Algorithms and Theory
of Computation. CRC Press, 1997.

[9] LiLiu, Eric Li, Yimin Zhang, and Zhizhong Tang.
Optimization of frequent itemset mining on multiple-core
processor. IVLDB, pages 1275-1285, 2007.

[10] Roger MacNicol and Blaine French. Sybase 1Q multiplex -
designed for analytics. IMLDB, pages 1227-1230, 2004.

[11] Stefan Manegold, Peter Boncz, and Martin Kersten.
Optimizing main-memory join on modern hardwareEE
Trans. on Knowl. and Data Eng., 14(4):709-730, 2002.

[12] Stefan Manegold, Peter Boncz, Niels Nes, and Martin
Kersten. Cache-conscious radix-decluster projections. |
VLDB, pages 684—-695, 2004.

[13] Biswadeep Nag and David J. DeWitt. Memory allocation
strategies for complex decision support querie<CIIKM,
pages 116-123, 1998.

[14] Sriram Padmanabhan, Timothy Malkemus, Ramesh C.
Agarwal, and Anant Jhingran. Block oriented processing of

decision-support in main memory. \\LDB, pages 78-89,
1999.

[16] Jun Rao and Kenneth A. Ross. Making B+-trees cache
conscious in main memor§d GMOD, pages 475—-486, 2000.

[17] Abraham Silberschatz, Peter Baer Galvin, and Greg €agn
Operating System Concepts. John Wiley & Sons, Inc., 6th
edition, 2003.

[18] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedon
Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau,
Amerson Lin, Sam Madden, Elizabeth O’'Neil, Pat O'Neil,
Alex Rasin, Nga Tran, and Stan Zdonik. C-store: a
column-oriented dbms. IMLDB, pages 553-564, 2005.

[19] Jingren Zhou, John Cieslewicz, Kenneth A. Ross, andiMih
Shah. Improving database performance on simultaneous
multithreading processors. WiL.DB, pages 49-60, 2005.

[20] Jingren Zhou and Kenneth A. Ross. Buffering accesses to
memory-resident index structures.\'hDB, pages 405-416,
2003.

[21] Jingren Zhou and Kenneth A. Ross. Buffering databse
operations for enhanced instruction cache performance. In
S GMOD, pages 191-202, 2004.

APPENDIX

A. EXPERIMENTAL SETUP

We ran all experiments on a 1GHz Sun UltraSPARC T1 archi-
tecture, the details of which are summarized in Table 1. The T
is a chip multiprocessor with 8 cores and 4 threads per cara fo
total of 32 hardware thread contexts. It has a small 8KB Lheac
for each core (i.e. shared amongst 4 threads) and a largeadtizc
(3MB in our case) shared between all hardware threads. dtseca
line is 64 bytes. A large main memory (8GB) ensured that &l th
data and processing were in-memory. The T1's TLB supporis mu
tiple page sizes, and we forced the use of large, 256MB pages t
ensure that TLB misses did not affect our measurements.

Experiments were run using both a hash-based aggregation op

erator and a hash join operator.

Processor 1 GHz UltraSPARC T1j
Main Memory 8GB

L1 Instruction Cache| 16KB/core

L1 Data Cache 8KB/core

L2 Data Cache 3MB

Hardware Threads | 32

Cache Associativity | 12

Data Cache Line Siz¢ 64

Table 1: Hardware Platform used for Experiments

Aggregation Implementation

The hash-based aggregation operator used in this paperrs.ti-
threaded, adaptive aggregation method presented in [3jedBan
lightweight sampling of the input, the operator choosesvben
different hash-based aggregation options. When there imno
terthread contention or temporal locality in hash tableeases,
the adaptive operator chooses to use one global hash tadiedsh
among all of the threads. This global table requires the fise o
mutex or atomic operations in order to protect concurregtegate
updates. When interthread contention or temporal locaityigh,
the adaptive operator chooses a two-level aggregationadetim
this method, each thread has a small private hash table thebw
tain contentious and frequently accessed items. Thistpriedble
spills excess entries into the global table described abéivelly,
the adaptive operator is able to detect input with runs o$eoutive
keys which can be aggregated directly. This run-based ggtion

is not used in any of the experiments in this paper. The imetda:
tion of the adaptive aggregation operator is described irerdetail
in [3].

Hash Join Implementation

The hash join implementation used in these experimentsnitasi

to the hash join described by Manegold et al. [11], in whic el
ments that hash to the same location are chained togetimey aisi
array indexed by the record id of the element in the bucket. An
array entry contains the record id (or index) of the next rééo
that bucket. Thus by following the chain of record ids, eastord

in a hash bucket may be located. Chaining, however, is avelat
rare occurrence because we sized the hash table to haveragave
load factor of.5.

As input, the hash join takes two relations whose tuplestaae t
keys to be joined, and produces a join index as output. Becaus
writing the join index must to be done in parallel by multigheeads,
concurrent output writing is accomplished using the patailffer
data structure described in [4]. The parallel buffer allowstiple

threads to read or write a shared buffer with minimal intes&l
contention.

We study the performance of the probe phase of the join, once
the hash table on the smaller input has been built.

Input Characteristics

In a main-memory setting, the transfer of data between th®IRA
and the cache is a precious resource. As a result, unnegessar
redundant reading or copying of data is likely to perform oo
Such issues motivate the use of column-wise storage [102]18,
so that only the required columns need to be read. Join #igasi
that build a join index and resolve the pointers in a final stage
beneficial in a main-memory setting for similar reasons [12]

It is therefore appropriate to focus on situations in whiuod tu-
ples flowing between operators are relatively narrow. Inevadu-
ation, they will be 8 or 16 bytes. In the event that wider tspee
needed, the resulting extra cache misses could be patidiien
using prefetching.

In all experiments the input contain@d* tuples. For aggrega-
tion, the input tuples used were two 64-bit unsigned intggso
each input tuple is 16 bytes long (or 0.25 cache lines). Fohtsh
join, the input tuples consisted of 64-bit keys, so eachetupl8
bytes long (or 0.125 cache lines). The record-id of a keyrigphi
its position in the record sequence. The output join indexsists
of tuples with two 32-bit record- ids, so each output tuplals 8
bytes long. The input distributions were generated usiegébh-
nigues described in [6].

Thread Coordination

Coordination between the scheduler thread and the workeris i
variables shared between each worker and the schedulem Whe
worker thread is launched, its shared “pending” flag is sédls®e.
Worker threads spin-wait for this flag to become true. Thesdeh
uler thread selects an operator to run by setting a sharéablar
to point to the current operator as well as by specifying @eaof
tuples for each thread to process. The scheduler thread ttar
worker threads by setting the pending flag to true. It alsetee®
zero a counter shared by all worker threads. As each workeadh
completes its assigned task, the worker thread sets itsnapfidg
back to false and atomically increments the counter. Thekevor
thread then goes back to waiting for its pending flag to change
In the mean time, the scheduler thread is waiting for theeshar
counter to equal the number of worker threads, at which time i
knows that all threads have completed their assigned watlaes
ready for the next operator assignment. While waiting forkecs

to complete, the scheduler thread could perform preparatork

for the next scheduling task, but such optimizations aret¢efu-
ture work.

Scheduling of independent operators is done accordingeto th
following heuristic: schedule the operator that has preedghe
least input so far, excluding the operator that was run omptke
vious time-slice. When all operators have the same buffer, €
round-robin schedule results. When there are mixed buifess
operators with smaller buffers will get scheduled more rottean
those with larger buffers.

