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Motivation

Starting data: category C, endofunctor H : C −→ C
Among fixed points: final coalgebra, initial algebra

Categories enriched over complete metric spaces: unique fixed point
[Adamek, Reiterman 1994]

Categories enriched over cpo: final coalgebra L coincides with initial
algebra I [Plotkin, Smyth 1983]

Category with no extra structure Set: final coalgebra L is completion
of initial algebra I [Barr 1993]
Deficit: if H0 = 0, important cases not covered (as A× (−)n, D,
Pκ+)

Locally finitely presentable categories: Hom(B, L) completion of
Hom(B, I ) for all finitely presentable objects B [Adamek 2003]
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In this talk

Category: Alg(M) for a Set-monad M

Alg(M)-functor: obtained from lifting
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Construction of the final coalgebra

Assumption 1: functor H : Set −→ Set ωop-continuous

Terminal sequence

1 H1
too . . .oo Hn1oo . . .Hntoo

The limit of the terminal sequence is the final H-coalgebra by
cocontinuity ξ = τ−1 : L ' HL
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Final coalgebras and anamorphisms

For each coalgebra C
ξC−→ HC there is a cone over the terminal

sequence

1 H1
too . . .oo Hn1oo . . .Hntoo

HC

Hα0

[[

C

ff

α0

aa

αn

RR

Topology:
Discrete topology on Hn1.
Initial topology on L, HL and C =⇒ L complete ultrametric space.
All maps are continuous.
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Lifting functors to algebras over a monad

Monad M = (M,m : M2 −→ M, u : Id −→ M)

Adjunction FM a UM : Alg(M) −→ Set

Initial object M20 −→ M0, terminal object M1 −→ 1

Lifting of H to Alg(M)

Alg(M)
H̃ //

UM

��

Alg(M)

UM

��
Set

H // Set

⇐⇒ Distributive law λ : MH −→ HM

M2H
Mλ //

mH

��

MHM
λM // HM2

Hm
��

MH
λ // HM

H
uH //

Hu !!CC
CC

CC
CC

MH

λ
��

HM
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The final coalgebra and the lifting

Assumption 2: there is a lifting H̃ of H to Alg(M)

Then (L, L
ξ−→HL) inherits an algebra structure map ML

γ−→L making it
the final H̃-coalgebra.

Lemma

The cone ML
Mpn−→ MHn1

an−→ Hn1 is induced by the H-coalgebra structure
of ML

M1

a0

��

MH1
Mt

oo

a1

��

. . .oo MHn1oo

an
��

. . .
MHnt
oo ML

Mpnxx

γ

��
1 H1

too . . .oo Hn1oo . . .Hntoo L
pn

ff

Hence the unique coalgebra map γ : ML −→ L is also the anamorphism
αML : ML −→ L for the coalgebra ML.
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The final coalgebra and the lifting

Diagram in Alg(M) with limiting lower sequence

M1

a0

��

MH1
Mt

oo

a1

��

. . .oo MHn1oo

an
��

. . .
MHnt
oo ML

Mpnxx

γ

��
1 H1

too . . .oo Hn1oo . . .Hntoo L
pn

ff

Topology
Discrete topology on both sequences
Initial topologies on ML and L

Proposition

The final H-coalgebra inherits a structure of a topological M-algebra.
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Fixed points of lifted functor

Initial-terminal H̃-sequences:

M0

s

��

// HM0 //

Hs
��

. . . // HnM0

Hns
��

// . . .

1 H1t
oo . . .oo Hn1oo . . .oo

Assumption 3: M0=1
[Adamek 2003] H̃ has also (non empty) initial algebra I built upon
this sequence in Alg(M), with unique M-algebra monomorphism
f : I −→ L

I

f

��

1
//
H1

t
oo // . . .

Ht
oo //

Hn1

in

66mmmmmmmmmmmmmmm

Hnt
oo // . . .oo

L

pn
hhQQQQQQQQQQQQQQQ
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Main result

Theorem

Let H be a Set-endofunctor ωop-continuous and M a monad on Set such
that:

1 H admits a lifting H̃ to Alg(M)

2 M0 = 1 in Alg(M)

Then the final H-coalgebra is the completion of the initial H̃-algebra under
a suitable (ultra)metric.
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Idea of the proof...

Take on I the coarsest topology such that f is continuous

I

f

��
L
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Idea of the proof...

Take on I the coarsest topology such that f is continuous = initial
topology from the cone pn ◦ f

I

f

��

MIoo

Mf

��

1
//
H1

t
oo // . . .

Ht
oo //

Hn1

in

66mmmmmmmmmmmmmmm

Hnt
oo // . . .oo

L

pn
hhQQQQQQQQQQQQQQQ

MLoo

Obtain MI −→ I topological algebra.
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Density of initial algebra into the final coalgebra

Remember L is complete ultrametric space.
Then the image of I is dense in L:
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An example

Consider HX = k× XA.
I Coalgebras are Moore automata.
I Final coalgebra is kA∗

, initial algebra is empty.
I For any monad M, such that k carries an M-algebra structure, a lifting

H̃ always exists.
I Hence the theorem applies: kA∗

as the completion of initial H̃-algebra.

Particular case: k is a semiring (like B = {0, 1},N,R≥0).
I Consider the monad M = (M,m, u) given by

MX = {f : X −→ k|supp(f ) finite}
I Final H-coalgebra: k〈〈A〉〉
I Initial H̃-algebra: k〈A〉
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Lifting functors to categories of algebras

Lifting of H to Alg(M) ⇐⇒ Distributive law λ : MH −→ HM

Lifting of T to Kl(M)

Kl(M)
T̂ // Kl(M)

Set

FM

OO

T // Set

FM

OO

⇐⇒ Distributive law ς : TM −→ MT

TM2
ςM //

Tm
��

MTM
Mς // M2T

mT

��
TM

ς // MT

T
Tu //

uT !!CC
CC

CC
CC

TM

ς

��
MT
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More on Kleisli lift

Assume Kleisli lift of T exists

Kl(M)
T̂ // Kl(M)

Set

FM

OO

T // Set

FM

OO

Consider also I : Kl(M) −→ Alg(M)

Construct the left Kan extension T̄ = LanI(IT̂ )
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More on Kleisli lift

Upper diagram commutes: IT̂ ∼= T̄I.

Alg(M)

T̄

''
Kl(M)

I
oo T̂ // Kl(M)

I
// Alg(M)

Set
FM

eeKKKKKKKKKK
FM

OO

T // Set

FM
99ssssssssss

FM

OO

It follows that

Alg(M)
T̄ //

∼=

Alg(M)

Set

FM

OO

T // Set

FM

OO
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Commuting pair of Set-endofunctors

Take two functors T , H on Set such that:
I H has a lift H̃ to Alg(M)
I T has a lift T̂ to Kl(M), hence an extension T̄ to Alg(M)
I H̃ ∼= T̄

Then

MT = UMFMT ∼= UMT̄ FM ∼= UMH̃FM = HUMFM = HM

Hence MT ∼= HM
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Commuting pair of Set-endofunctors

Definition

Let M = (M,m, u) be a monad on Set. A pair of Set-endofunctors (T ,H)
such that MT ∼= HM is called an M-commuting pair.

Trivial examples:

T = H = Id or T = H = M, M any monad

T = H = A + (−), M = B + (−)

T = H = A× (−), M = B × (−)

M idempotent monad, H = M, T = Id or H = Id , T = M
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Commuting pair of Set-endofunctors

H̃ ∼= T̄ implies not only natural isomorphism MT ∼= HM, but also
isomorphism of algebras

MHMX

∼=
��

λMX // HM2X
HmX // HMX

∼=
��

M2TX mTX

// MTX

because of H̃FM ∼= T̄ FM ∼= FMT

If the algebra lift of H is isomorphic to the algebra extension of T ,
then H and T form a commuting pair by an algebra isomorphism
HM ∼= MT .
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Commuting pair of Set-endofunctors

Conversely, assume a commuting pair (T ,H) such that corresponding
lifts exists, and HMX ∼= MTX as algebras.

This implies H̃ ∼= T̄ on free algebras.

Assume M, T , H finitary. Then T̄ is determined by its action on
finitely free algebras, and so is H̃ (because it preserves sifted colimits)

Obtain H̃ ∼= T̄
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Commuting pair and algebra lift-extension isomorphism

Theorem

Let H, T two endofunctors and M a monad on Set, such that H and T
have algebra lift H̃, respectively Kleisli lift with respect to the monad M,
with T̄ the corresponding left Kan extension to algebras.Then:

If H̃ ∼= T̄ , then (T ,H) form an M-commuting pair and
HMX ∼= MTX as algebras for any X .

If M,H,T are finitary and MT ∼= HM as algebras, then H̃ ∼= T̄ .
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Commuting pair and algebra lift-extension isomorphism

Corollary

Let H, T two endofunctors and M a monad on Set, such that:

M,H,T are finitary

H is ωop-continuous

H has algebra lift, T has Kleisli lift

MT ∼= HM as algebras

M0 = 1 as algebras

Then the final H-coalgebra is the completion of the free M-algebra built
on the initial T -algebra.
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An example

Consider TX = 1 + A · X and M any monad.

Kleisli lift exists

Algebra extension T̄ X = FM1 + A · X

Assume Alg(M) has biproducts. Then T̄ is the lifting to Alg(M) of
the Set-endofunctor HX = M1× XA.

Hence (T ,H) form a commuting pair.
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More on commuting pairs

Given T and H, find the linking monad such that (T ,H) form a
commuting pair.

Given monad M and (T ,H) commuting pair, find both distributive laws.
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More on commuting pairs

The Kleisli lift

M commutative monad, T analytic functor =⇒ distributive law exists

Particular case: T contains products, as in T1X = A×X or T2X = X ×X
Then T̄1X = FMA⊗X , respectively T̄2X = X ⊗X (as FM is monoidal) If
M is finitary, then UM sends (X , x)⊗ (Y , y) to the reflexive
Set-coequalizer of

M(MX ×MY )
M(x×y)

⇒
mX×Y ◦Mϕ2

M(X × Y )

Hence for any such T and M, a corresponding commuting pair (T ,H) can
be constructed.
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More on commuting pairs

The algebra lift

More complicated, even for simplest cases of polynomial functors:

H constant functor, then the image of H must be carrier of an
M-algebra

HX = A× X n, then ∃ lifting =⇒ A is the carrier of an M-algebra

HX = A + X or HX = X + X , there is no obvious distributive law

MH
λ−→ HM
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Thank you!
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