On coalgebras over algebras

Adriana Balan¹ Alexander Kurz²

¹University Politehnica of Bucharest, Romania

²University of Leicester, UK

10th International Workshop on Coalgebraic Methods in Computer Science

Outline

2 The final coalgebra of a continuous functor

3 Final coalgebra and lifting

Ocommuting pair of endofunctors and their fixed points

< ∃ > <

Motivation

- Starting data: category C, endofunctor $H : C \longrightarrow C$
- Among fixed points: final coalgebra, initial algebra
- Categories enriched over complete metric spaces: unique fixed point [Adamek, Reiterman 1994]
- Categories enriched over cpo: final coalgebra *L* coincides with initial algebra *I* [Plotkin, Smyth 1983]

Motivation

- Starting data: category C, endofunctor $H : C \longrightarrow C$
- Among fixed points: final coalgebra, initial algebra
- Categories enriched over complete metric spaces: unique fixed point [Adamek, Reiterman 1994]
- Categories enriched over cpo: final coalgebra *L* coincides with initial algebra *I* [Plotkin, Smyth 1983]
- Category with no extra structure Set: final coalgebra L is completion of initial algebra I [Barr 1993]
 Deficit: if H0 = 0, important cases not covered (as A × (-)ⁿ, D, P_{κ+})

A B M A B M

Motivation

- Starting data: category C, endofunctor $H : C \longrightarrow C$
- Among fixed points: final coalgebra, initial algebra
- Categories enriched over complete metric spaces: unique fixed point [Adamek, Reiterman 1994]
- Categories enriched over cpo: final coalgebra *L* coincides with initial algebra *I* [Plotkin, Smyth 1983]
- Category with no extra structure Set: final coalgebra L is completion of initial algebra I [Barr 1993]
 Deficit: if H0 = 0, important cases not covered (as A × (-)ⁿ, D, P_{κ+})
- Locally finitely presentable categories: Hom(B, L) completion of Hom(B, I) for all finitely presentable objects *B* [Adamek 2003]

イロト 不得下 イヨト イヨト 二日

In this talk

- Category: Alg(M) for a Set-monad M
- Alg(M)-functor: obtained from lifting

▲ 恵 → → ▲

Outline

2 The final coalgebra of a continuous functor

Final coalgebra and lifting

4 Commuting pair of endofunctors and their fixed points

< ∃ > <

Construction of the final coalgebra

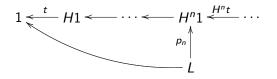
- Assumption 1: functor $H : Set \longrightarrow Set \ \omega^{op}$ -continuous
- Terminal sequence

$$1 \stackrel{t}{\longleftarrow} H1 \stackrel{H^n t}{\longleftarrow} \cdots \stackrel{H^n 1}{\longleftarrow} H^n t \stackrel{H^n t}{\longleftarrow} \cdots$$

∃ > <</p>

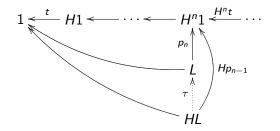
Construction of the final coalgebra

- Assumption 1: functor $H : Set \longrightarrow Set \ \omega^{op}$ -continuous
- Terminal sequence



Construction of the final coalgebra

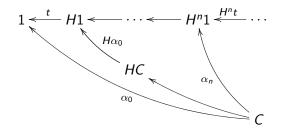
- Assumption 1: functor $H : Set \longrightarrow Set \ \omega^{op}$ -continuous
- Terminal sequence



• The limit of the terminal sequence is the final H-coalgebra by cocontinuity $\xi = \tau^{-1} : L \simeq HL$

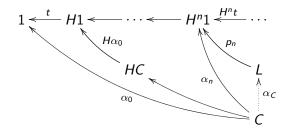
Final coalgebras and anamorphisms

• For each coalgebra $C \xrightarrow{\xi_C} HC$ there is a cone over the terminal sequence



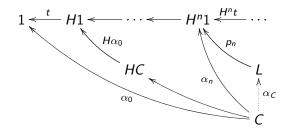
Final coalgebras and anamorphisms

• For each coalgebra $C \xrightarrow{\xi_C} HC$ there is a cone over the terminal sequence



Final coalgebras and anamorphisms

• For each coalgebra $C \xrightarrow{\xi_C} HC$ there is a cone over the terminal sequence



• Topology:

Discrete topology on H^n 1.

Initial topology on L, HL and $C \Longrightarrow L$ complete ultrametric space. All maps are continuous.

Outline

2) The final coalgebra of a continuous functor

Final coalgebra and lifting

4 Commuting pair of endofunctors and their fixed points

< ∃ > <

Lifting functors to algebras over a monad

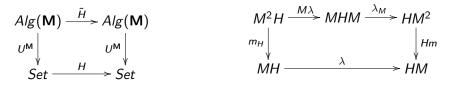
- Monad $\mathbf{M} = (M, m : M^2 \longrightarrow M, u : Id \longrightarrow M)$
- Adjunction $F^{\mathsf{M}} \dashv U^{\mathsf{M}} : Alg(\mathsf{M}) \longrightarrow Set$
- Initial object $M^2 0 \longrightarrow M 0$, terminal object $M 1 \longrightarrow 1$

Lifting functors to algebras over a monad

• Monad
$$\mathbf{M} = (M, m : M^2 \longrightarrow M, u : Id \longrightarrow M)$$

- Adjunction $F^{\mathsf{M}} \dashv U^{\mathsf{M}} : Alg(\mathsf{M}) \longrightarrow Set$
- Initial object $M^2 0 \longrightarrow M 0$, terminal object $M 1 \longrightarrow 1$

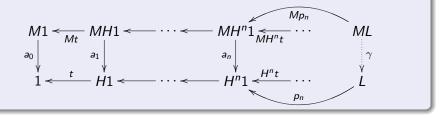
Lifting of H to $Alg(\mathbf{M}) \iff D$ istributive law $\lambda: MH \longrightarrow HM$



Assumption 2: there is a lifting \widetilde{H} of H to $Alg(\mathbf{M})$ Then $(L, L \xrightarrow{\xi} HL)$ inherits an algebra structure map $ML \xrightarrow{\gamma} L$ making it the final \widetilde{H} -coalgebra.

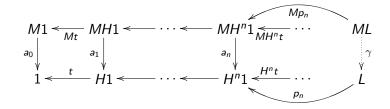
Lemma

The cone $ML \xrightarrow{Mp_n} MH^n 1 \xrightarrow{a_n} H^n 1$ is induced by the H-coalgebra structure of ML



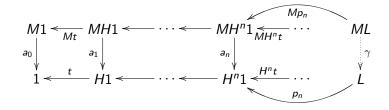
Hence the unique coalgebra map $\gamma: ML \longrightarrow L$ is also the anamorphism $\alpha_{ML}: ML \longrightarrow L$ for the coalgebra ML.

• Diagram in Alg(M) with limiting lower sequence



CMCS 2010 11 / 31

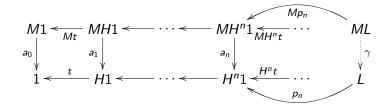
• Diagram in $Alg(\mathbf{M})$ with limiting lower sequence



Topology

Discrete topology on both sequences Initial topologies on ML and L

• Diagram in $Alg(\mathbf{M})$ with limiting lower sequence



Topology

Discrete topology on both sequences Initial topologies on ML and L

Proposition

The final H-coalgebra inherits a structure of a topological M-algebra.

A. Balan (UPB), A. Kurz (UL)

• Initial-terminal \widetilde{H} -sequences:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Initial-terminal \tilde{H} -sequences:

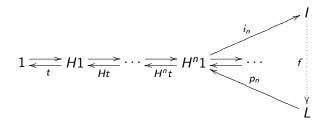
• Assumption 3: M0=1

• • = • • = •

• Initial-terminal \widetilde{H} -sequences:

• Assumption 3: M0=1

[Adamek 2003] *H* has also (non empty) initial algebra *I* built upon this sequence in *Alg*(**M**), with unique **M**-algebra monomorphism *f* : *I* → *L*



A. Balan (UPB), A. Kurz (UL)

Main result

Theorem

Let H be a Set-endofunctor ω^{op} -continuous and **M** a monad on Set such that:

- H admits a lifting \tilde{H} to $Alg(\mathbf{M})$
- $M0 = 1 in Alg(\mathbf{M})$

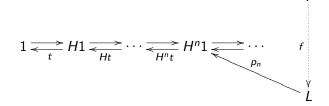
Then the final H-coalgebra is the completion of the initial H-algebra under a suitable (ultra)metric.

Idea of the proof...

Take on I the coarsest topology such that f is continuous

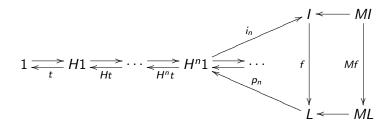
Idea of the proof...

Take on *I* the coarsest topology such that *f* is continuous = initial topology from the cone $p_n \circ f$



Idea of the proof...

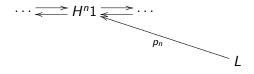
Take on *I* the coarsest topology such that *f* is continuous = initial topology from the cone $p_n \circ f$

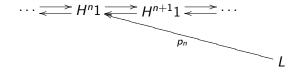


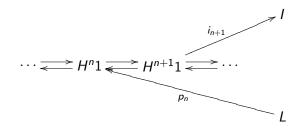
Obtain $MI \longrightarrow I$ topological algebra.

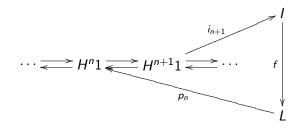
Remember L is complete ultrametric space. Then the image of I is dense in L:

Ι









An example

- Consider $HX = \mathbb{k} \times X^A$.
 - Coalgebras are Moore automata.
 - Final coalgebra is \mathbb{k}^{A^*} , initial algebra is empty.
 - For any monad **M**, such that \Bbbk carries an **M**-algebra structure, a lifting \widetilde{H} always exists.
 - Hence the theorem applies: \mathbb{k}^{A^*} as the completion of initial \tilde{H} -algebra.

An example

- Consider $HX = \mathbb{k} \times X^A$.
 - Coalgebras are Moore automata.
 - Final coalgebra is \mathbb{k}^{A^*} , initial algebra is empty.
 - For any monad **M**, such that \Bbbk carries an **M**-algebra structure, a lifting \widetilde{H} always exists.
 - Hence the theorem applies: \mathbb{k}^{A^*} as the completion of initial \widetilde{H} -algebra.
- Particular case: \Bbbk is a semiring (like $\mathbb{B}=\{0,1\},\mathbb{N},\mathbb{R}_{\geq 0}).$
 - Consider the monad M = (M, m, u) given by MX = {f : X → k|supp(f) finite}

- Consider $HX = \mathbb{k} \times X^A$.
 - Coalgebras are Moore automata.
 - Final coalgebra is \mathbb{k}^{A^*} , initial algebra is empty.
 - For any monad **M**, such that \Bbbk carries an **M**-algebra structure, a lifting \widetilde{H} always exists.
 - Hence the theorem applies: \mathbb{k}^{A^*} as the completion of initial \widetilde{H} -algebra.
- Particular case: \Bbbk is a semiring (like $\mathbb{B}=\{0,1\},\mathbb{N},\mathbb{R}_{\geq 0}).$
 - Consider the monad M = (M, m, u) given by MX = {f : X → k|supp(f) finite}
 - Final *H*-coalgebra: $\mathbb{k}\langle\langle A \rangle\rangle$
 - Initial H-algebra: $\mathbb{k}\langle A \rangle$

Outline

1 Motivation

2 The final coalgebra of a continuous functor

Final coalgebra and lifting

Commuting pair of endofunctors and their fixed points

- ₹ 🕨 🕨

Lifting functors to categories of algebras

Lifting of H to $Alg(\mathbf{M}) \iff Distributive law \lambda : MH \longrightarrow HM$

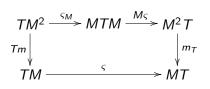
Lifting functors to categories of algebras

Lifting of *H* to *Alg*(**M**) Lifting of *T* to *Kl*(**M**)

 $\stackrel{\longleftrightarrow}{\iff}$

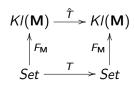


Distributive law $\lambda : MH \longrightarrow HM$ Distributive law $\varsigma : TM \longrightarrow MT$



More on Kleisli lift

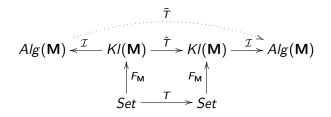
• Assume Kleisli lift of T exists



- ∢ ∃ ▶

More on Kleisli lift

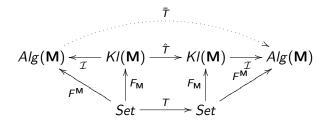
- Assume Kleisli lift of T exists
- Consider also $\mathcal{I}: Kl(M) \longrightarrow Alg(M)$



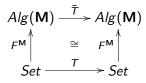
• Construct the left Kan extension $\overline{T} = Lan_{\mathcal{I}}(\mathcal{I}\hat{T})$

More on Kleisli lift

• Upper diagram commutes: $\mathcal{I}\hat{T} \cong \overline{\mathcal{T}}\mathcal{I}$.



It follows that



CMCS 2010 20 / 31

- Take two functors *T*, *H* on *Set* such that:
 - *H* has a lift \tilde{H} to $Alg(\mathbf{M})$
 - T has a lift \hat{T} to $Kl(\mathbf{M})$, hence an extension \overline{T} to $Alg(\mathbf{M})$
 - $\blacktriangleright \ \widetilde{H} \cong \overline{T}$

- Take two functors *T*, *H* on *Set* such that:
 - *H* has a lift \tilde{H} to $Alg(\mathbf{M})$
 - T has a lift \hat{T} to $KI(\mathbf{M})$, hence an extension \bar{T} to $Alg(\mathbf{M})$

$$\blacktriangleright \quad \widetilde{H} \cong \overline{T}$$

Then

$$MT = U^{\mathsf{M}}F^{\mathsf{M}}T \cong U^{\mathsf{M}}\overline{T}F^{\mathsf{M}} \cong U^{\mathsf{M}}\widetilde{H}F^{\mathsf{M}} = HU^{\mathsf{M}}F^{\mathsf{M}} = HM$$

• Hence $MT \cong HM$

Definition

Let $\mathbf{M} = (M, m, u)$ be a monad on *Set*. A pair of *Set*-endofunctors (T, H) such that $MT \cong HM$ is called an **M**-commuting pair.

Definition

Let $\mathbf{M} = (M, m, u)$ be a monad on *Set*. A pair of *Set*-endofunctors (T, H) such that $MT \cong HM$ is called an **M**-commuting pair.

Trivial examples:

•
$$T = H = Id$$
 or $T = H = M$, **M** any monad

•
$$T = H = A + (-), \mathbf{M} = B + (-)$$

•
$$T = H = A \times (-), M = B \times (-)$$

• **M** idempotent monad, H = M, T = Id or H = Id, T = M

• $\widetilde{H} \cong \overline{T}$ implies not only natural isomorphism $MT \cong HM$, but also isomorphism of algebras

because of $\widetilde{H}F^{\mathsf{M}} \cong \overline{T}F^{\mathsf{M}} \cong F^{\mathsf{M}}T$

• $\widetilde{H} \cong \overline{T}$ implies not only natural isomorphism $MT \cong HM$, but also isomorphism of algebras

because of $\widetilde{H}F^{\mathsf{M}} \cong \overline{T}F^{\mathsf{M}} \cong F^{\mathsf{M}}T$

• If the algebra lift of H is isomorphic to the algebra extension of T, then H and T form a commuting pair by an algebra isomorphism $HM \cong MT$.

- Conversely, assume a commuting pair (T, H) such that corresponding lifts exists, and $HMX \cong MTX$ as algebras.
- This implies $\tilde{H} \cong \bar{T}$ on free algebras.

- Conversely, assume a commuting pair (T, H) such that corresponding lifts exists, and $HMX \cong MTX$ as algebras.
- This implies $\tilde{H} \cong \bar{T}$ on free algebras.
- Assume M, T, H finitary. Then \overline{T} is determined by its action on finitely free algebras, and so is \widetilde{H} (because it preserves sifted colimits)

- Conversely, assume a commuting pair (T, H) such that corresponding lifts exists, and $HMX \cong MTX$ as algebras.
- This implies $\tilde{H} \cong \bar{T}$ on free algebras.
- Assume M, T, H finitary. Then \overline{T} is determined by its action on finitely free algebras, and so is \widetilde{H} (because it preserves sifted colimits)
- Obtain $\tilde{H} \cong \bar{T}$

Commuting pair and algebra lift-extension isomorphism

Theorem

Let H, T two endofunctors and **M** a monad on Set, such that H and T have algebra lift \tilde{H} , respectively Kleisli lift with respect to the monad **M**, with \bar{T} the corresponding left Kan extension to algebras. Then:

- If H̃ ≅ T̄, then (T, H) form an M-commuting pair and HMX ≅ MTX as algebras for any X.
- If M, H, T are finitary and $MT \cong HM$ as algebras, then $H \cong \overline{T}$.

Commuting pair and algebra lift-extension isomorphism

Corollary

Let H, T two endofunctors and M a monad on Set, such that:

- M, H, T are finitary
- H is ω^{op}-continuous
- H has algebra lift, T has Kleisli lift
- MT ≅ HM as algebras
- M0 = 1 as algebras

Then the final H-coalgebra is the completion of the free M-algebra built on the initial T-algebra.

- Consider $TX = 1 + A \cdot X$ and **M** any monad.
- Kleisli lift exists
- Algebra extension $\overline{T}X = F^{M}1 + A \cdot X$

- Consider $TX = 1 + A \cdot X$ and **M** any monad.
- Kleisli lift exists
- Algebra extension $\overline{T}X = F^{M}1 + A \cdot X$
- Assume Alg(M) has biproducts. Then T is the lifting to Alg(M) of the Set-endofunctor HX = M1 × X^A.

- Consider $TX = 1 + A \cdot X$ and **M** any monad.
- Kleisli lift exists
- Algebra extension $\overline{T}X = F^{M}1 + A \cdot X$
- Assume $Alg(\mathbf{M})$ has biproducts. Then \overline{T} is the lifting to $Alg(\mathbf{M})$ of the *Set*-endofunctor $HX = M1 \times X^A$.
- Hence (T, H) form a commuting pair.

Given T and H, find the linking monad such that (T, H) form a commuting pair.

Given T and H, find the linking monad such that (T, H) form a commuting pair. Given monad M and (T, H) commuting pair, find both distributive laws.

The Kleisli lift

M commutative monad, T analytic functor \Longrightarrow distributive law exists

• • = • •

The Kleisli lift

M commutative monad, T analytic functor \implies distributive law exists Particular case: T contains products, as in $T_1X = A \times X$ or $T_2X = X \times X$ Then $\overline{T}_1X = F^{\mathsf{M}}A \otimes X$, respectively $\overline{T}_2X = X \otimes X$ (as F^{M} is monoidal)

The Kleisli lift

M commutative monad, T analytic functor \implies distributive law exists Particular case: T contains products, as in $T_1X = A \times X$ or $T_2X = X \times X$ Then $\overline{T}_1X = F^{\mathsf{M}}A \otimes X$, respectively $\overline{T}_2X = X \otimes X$ (as F^{M} is monoidal) If **M** is finitary, then U^{M} sends $(X, x) \otimes (Y, y)$ to the reflexive *Set*-coequalizer of

$$M(MX \times MY) \stackrel{M(x \times y)}{\underset{m_{X \times Y} \circ M\varphi_2}{\Rightarrow}} M(X \times Y)$$

The Kleisli lift

M commutative monad, T analytic functor \implies distributive law exists Particular case: T contains products, as in $T_1X = A \times X$ or $T_2X = X \times X$ Then $\overline{T}_1X = F^{\mathsf{M}}A \otimes X$, respectively $\overline{T}_2X = X \otimes X$ (as F^{M} is monoidal) If **M** is finitary, then U^{M} sends $(X, x) \otimes (Y, y)$ to the reflexive *Set*-coequalizer of

$$M(MX \times MY) \stackrel{M(x \times y)}{\underset{m_{X \times Y} \circ M\varphi_2}{\Rightarrow}} M(X \times Y)$$

Hence for any such T and \mathbf{M} , a corresponding commuting pair (T, H) can be constructed.

The algebra lift

More complicated, even for simplest cases of polynomial functors:

The algebra lift

More complicated, even for simplest cases of polynomial functors:

- *H* constant functor, then the image of *H* must be carrier of an **M**-algebra
- $HX = A \times X^n$, then \exists lifting $\Longrightarrow A$ is the carrier of an **M**-algebra
- HX = A + X or HX = X + X, there is no obvious distributive law $MH \xrightarrow{\lambda} HM$

Thank you!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・