
1
( ).i i ii ...n
|S I|/|S | F


 

Hierarchically Organized Skew-Tolerant Histograms  

for Geographic Data Objects 
 
 

Yohan J. Roh 
SAIT, Samsung Electronics 

yohan.roh@samsung.com 

Jae Ho Kim 
KAIST 

jaeho@dbserver.kaist.ac.kr 

Yon Dohn Chung 
Korea University 

ydchung@korea.ac.kr 
 

Jin Hyun Son 
Hanyang University 

jhson@hanyang.ac.kr 

 

Myoung Ho Kim 
KAIST 

mhkim@dbserver.kaist.ac.kr 

 

ABSTRACT 

Histograms have been widely used for fast estimation of query 

result sizes in query optimization. In this paper, we propose a new 

histogram method, called the Skew-Tolerant Histogram 

(STHistogram) for two or three dimensional geographic data 

objects that are used in many real-world applications in practice. 

The proposed method provides a significantly enhanced accuracy 

in a robust manner even for the data set that has a highly skewed 

distribution. Our method detects hotspots present in various parts 

of a data set and exploits them in organizing histogram buckets. 

For this purpose, we first define the concept of a hotspot, and 

provide an algorithm that efficiently extracts hotspots from the 

given data set. Then, we present our histogram construction 

method that utilizes hotspot information. We also describe how to 

estimate query result sizes by using the proposed histogram. We 

show through extensive performance experiments that the 

proposed method provides better performance than other existing 

methods.  

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – spatial 

databases and GIS 

General Terms 

Algorithms, Experimentation, Performance 

Keywords 

Spatial Databases, Query Optimization, Histograms 

1. INTRODUCTION 
Histograms have been widely used as an approximation tool for 

multi-dimensional data distributions. The most important 

application of histograms is to estimate the result sizes of queries. 

This so-called selectivity estimation is used by query optimizers to 

determine the most efficient query execution plan [14, 15]. In 

addition, selectivity estimation has been shown to be useful in 

many other areas of database processing, e.g., top-k query 

processing, skyline query processing, load-balancing in parallel 

join query execution, and spatio-temporal query processing [3, 6, 

21, 22, 26, 27]. Motivated by such applications, there has been a 

great deal of work on the problem of selectivity estimation such as 

histograms [1, 2, 8, 11, 12, 19, 24, 28], wavelet transformation 

[18, 29], SVD [23], discrete cosine transform [17], and sampling 

[13]. Among these approaches, histograms have been shown to be 

one of the most popular and effective ways to obtain accurate 

estimates of selectivity for multi-dimensional queries [8]. A 

histogram consists of a set of buckets Bi, i = 1, ... , n, where each 

bucket Bi has its data space Si and frequency Fi of data objects 

within Si. The number of buckets for a histogram is usually a 

system parameter. Given a data range I specified in a query, an 

estimate of the selectivity of the query, i.e., the number of objects 

in I, is computed as follows, under uniform distribution 

assumption: Here, | | denotes the size of 

data space and „Si  I‟ denotes the intersection of Si and I. 

EXAMPLE 1. Consider a histogram that consists of three buckets 

B1 (S: 0~50, F: 100), B2 (S: 50~80, F: 40), and B3 (S: 80~100, F: 

60) for one-dimensional data domain [0 .. 100]. Suppose a query 

range is [30 .. 90]. Then, the selectivity estimate for this query is 

computed as follows: 20/50∙100 + 30/30∙40 + 10/20∙60 = 110. 

In this paper, we explore how to construct an effective 

histogram for selectivity estimates of range queries. We will focus 

on the histograms for two or three dimensional geographic objects. 

Let us consider cases of two-dimensional geographic data. 

Rectangle-shaped regions are commonly used for the data spaces 

of buckets. Each bucket has the specification of its data space or 

region together with the frequency of data objects (i.e., total 

number of data objects within it). Suppose that all the data objects 

in the region of a bucket are uniformly distributed. When a query 

is given, an estimated selectivity value for one bucket is computed 

in proportion to the size of the overlapping region between the 

query region and the bucket‟s region. The selectivity estimate for 

a query is the sum of all the estimated values for all the buckets as 

in Example 1. 

Skewness Problem. Consider Example 1 again. While the region 

of bucket B2 is fully contained in the query range, the regions of 

buckets B1 and B3 partially overlap with the query range. (From 

now on, for convenience, we will often use the term “bucket” to 

denote the region of a bucket, i.e., data space associated with the 

bucket, if there is no ambiguity.) In estimating a selectivity of the 
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query, we do not have a problem for buckets fully contained in the 

query range. However, buckets that partially overlap with the 

query range may cause a problem. In the example, we have 

computed the selectivity estimate under uniform distribution of 

data in each bucket B1 and B3. However, if data distribution is 

highly skewed in buckets B1 and B3, the selectivity estimate 

computed in Example 1 can be significantly deviated from the 

actual frequency of objects. Now, as an example of two 

dimensional data space, consider a certain bucket B in a two 

dimensional histogram that overlaps with a given query region as 

shown in Figure 1. In bucket B, 22 objects out of 30 objects are 

densely clustered, and this cluster of objects is outside the query 

region. If selectivity estimation is made based on the uniform 

distribution assumption, this cluster will cause an estimated 

selectivity to deviate significantly from the actual frequency of 

objects. Suppose the size of the overlapping region is one-third of 

the size of bucket B. Then the estimated number of objects for this 

overlapping region is (1/3)∙30 = 10, which is five times larger 

than the actual frequency 2. Note that this problem stems from the 

inappropriate organization of buckets in constructing a histogram. 

In other words, a histogram should not have a bucket within 

which there is a heavy cluster of objects such as bucket B in 

Figure 1.  

Many existing histograms do not cope with such clusters well. 

In this paper, we propose a new histogram method, called the 

Skew-Tolerant Histogram (STHistogram). When constructing a 

histogram, the STHistogram detects and utilizes the clusters of 

objects in data space. By directly utilizing clusters in organizing 

buckets, our proposed method can provide an enhanced accuracy 

in a robust manner over skewed distributions. Through extensive 

performance experiments, we show a significant accuracy 

improvement of the proposed method and its robustness to 

skewed data distribution. Note that, in the histogram for the one 

dimensional data space as in Example 1, the number of buckets 

that partially overlap with the given query range is usually two. 

But in the histogrtam for two or three dimensional geographic 

space, the number of buckets that partially overlap with the given 

query region is much larger than two in general.  

The rest of the paper is organized as follows. Section 2 

describes related work. In Section 3, we present most of main 

ideas in this work and propose our basic histogram method. 

Section 4 extends the basic method proposed in Section 3 to cover 

the cases when the basic method only may not work effectively. 

Section 5 provides the results of performance experiments with 

six real-life data sets as well as one synthetic data set. We draw 

our  conclusions in Section 6. 

2. RELATED WORK 
Histograms on multiple attributes of a relation have been 

widely used for various types of query processing, e.g., query 

optimization, top-k query processing, skyline query processing, 

load-balancing, spatio-temporal query processing. For query 

optimization, histograms are popularly used in commercial 

database systems to estimate the result sizes of (sub)queries and to 

develop the most efficient query execution plans [14, 15]. For 

top-k query processing, Bruno et al. [3] and Chaudhuri et al. [5] 

utilize histograms for translating a top-k request into a single 

range query that can be efficiently processed by existing database 

engines. They have shown that the use of histograms can avoid 

the requirement of a full sequential scans of the database and 

significantly reduce the time required to support top-k queries. For 

skyline query processing, Chaudhuri et al. [4] and Papadias et al. 

[21] use the statistics of histograms, such as MinSkew [1], to 

accurately estimate the result sizes of skyline queries. These 

estimated values are shown to be useful for providing immediate 

feedback to users and implementing skyline computation as an 

operator within database systems. For load-balancing of parallel 

hash joins, Poosala and Ioannidis [22] make use of histograms to 

accurately estimate the cost required to perform the join operation, 

and effectively balance the load across nodes that participate in 

the parallel execution. For spatio-temporal query processing, the 

authors of [6] use the MinSkew histogram [1] and extend it with 

velocities to estimate the selectivity of spatio-temporal window 

queries, i.e., the number of objects that will appear in the query 

window at a given future time. For the same purpose, Tao et al. 

[27] propose histogram-based solutions to effectively deal with 

the dynamics of the moving objects. Sun et al. [26] use the 

MinSkew histogram [1] to accurately estimate the selectivity of 

spatio-temporal joins, i.e., given two sets S1 and S2 of objects, the 

number of pairs <o1, o2> of objects such that o1
S1, o2

S2, and 

the distance between the two objects at a given future time is 

below a certain threshold.  

So far, many studies have been carried out with different 

approaches in order to enhance the accuracy of multi-dimensional 

histograms. The basic assumption in using a multi-dimensional 

histogram is that the histogram works well when data is uniformly 

distributed in every bucket. However, the problem of organizing 

buckets in such a way that the data is uniformly distributed in 

every bucket has been shown to be NP-hard [20]. Therefore, most 

existing methods use their own heuristics as follows.  

The EquiDepth histogram method [19] partitions the data space, 

one dimension at a time. Here, in each i-th dimension, the data 

space is divided into vi intervals, each of which has the same 

number of data objects. So, for a d-dimensional data set, a set of 

v1 × v2 × ... × vd buckets is constructed, where each bucket 

contains the same number of data objects. The EquiDepth 

histogram may be faster to construct among other types of multi-

dimensional histograms. But, because of its rigid structure, it may 

be not flexible to cope with various cases of data skew.  

The MinSkew histogram method [1] initially divides the data 

space into a uniform grid of rectangular regions. Then, it performs 

repeatedly binary space partitioning, where a bucket is 

partitioned into two sub-buckets. This partitioning approach may 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A bucket containing a cluster of objects. 

 

 

 

. An example of a bucket containing a cluster of objects. 
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(the number of objects: 30)

a  query region 
an estimate value: 10 

(> the true selectivity 2)



construct histograms rapidly; however, it may not recognize 

multi-dimensional subregions where data are not uniformly 

distributed, which may degrade the accuracy of histograms. This 

is because the partitioning heuristics of MinSkew is based on data 

skew in only one-dimension at a time rather than considering the 

skew of multiple dimensions at once. In this method, the number 

of grid cells is a user-provided parameter. The estimation accuracy 

of MinSkew may vary depending on this parameter [1]. In practice, 

it is difficult for users to provide the optimal or a near optimal 

value for the required parameter. 

The GenHist histogram method [11, 12] uses multi-dimensional 

grids of various sizes. In this method, high-frequency grid cells 

are converted into buckets. More specifically, it iteratively 

constructs a certain number of buckets by using grids. Being 

different from the aforementioned approaches, this method 

directly approximates multi-dimensional (i.e., joint) data 

distributions. The authors of GenHist claim that the GenHist 

histogram behaves more accurately in high dimension than the 

previous approaches on selectivity estimation for multi-

dimensional queries, such as random sampling, Wavelet [29], 

EquiDepth [19], and MinSkew [1].  

The RK-Hist histogram method, which has been recently 

proposed in [8], uses a special type of an r-tree index, i.e., Hilbert 

packed R-tree [16], where the entire data objects are sorted based 

on their positions along the Hilbert curve. The sorted objects are 

divided into several (leaf) nodes, in which the size of each leaf 

node is a disk block. Then, the RK-Hist method creates an initial 

set of buckets, where each bucket is constructed by merging a 

fixed number of leaf nodes. For each initial bucket, the skew of 

data is computed and then some bucket with a high skew is split 

into two in a repeatable manner, until the total number of buckets 

becomes the predefined number or there is no improvement of the 

total skew of data in buckets. The authors of RK-Hist claim that 

the RK-Hist histogram outperforms other existing methods, such 

as EquiDepth [19] and GenHist [11, 12] in terms of accuracy. 

However, the RK-Hist method may introduce unnecessary buckets, 

when a fixed number (say p) of leaf nodes is merged into an initial 

bucket. For example, consider a node u with a very low skew that 

is an ancestor of a large number of leaf nodes. If the number of 

the descendant leaf nodes is much greater than p, several buckets 

will be constructed from these leaf nodes. But, only one bucket 

consisting of a single node u suffices to provide accurate 

estimation of selectivity (instead of several buckets).  

There are several approaches for bucket layout. In the grid 

approach, buckets are arranged in rows and columns, e.g., as in 

the well-known equal-width histogram. In the recursively 

partitioning approach, an existing bucket is recursively divided 

into two sub-buckets along some dimension, e.g., as in MinSkew 

[1]. There are also other approaches for bucket layout that impose 

fewer restrictions than the aforementioned approaches on the 

arrangement of buckets, i.e., allow a newly created bucket to 

cover a portion of data space in a more flexible way. For example, 

in the methods of GenHist [11, 12] and RK-Hist [8], the regions 

of buckets are allowed to overlap. There can be a nested approach, 

where the region of any bucket, except the bucket whose region 

covers the whole data space, is fully contained in the region of 

some other bucket. Then, histograms from the nested construction 

of buckets can be represented as hierarchies of buckets. Our 

histogram proposed in this paper has nested layout of buckets.  

Histograms are typically recomputed to reflect updates of the 

underlying data in a periodic manner. There is another interesting 

approach to maintaining histograms, called the self-tuning 

histogram [2, 24]. This approach incrementally maintains buckets 

in response to feedback from the query execution engine about the 

actual cardinalities of range queries. Because these cardinalities 

reflect data updates, the approach can gracefully adapt buckets to 

the updates of the underlying data set. But there are following 

limitations in this approach. First, because only the regions of 

queries that have been processed are used, only buckets related to 

those queries can be updated. That is, updates in the other regions 

may not be reflected. Second, the feedback-based maintenance 

inevitably incurs additional overhead on the query processing [2, 

24]. There is other research on maintenance of histograms [9, 28]. 

3. THE PROPOSED METHOD 
We present in this section our new histogram method, called 

the Skew-Tolerant Histogram (STHistogram). We focus on the 

histograms for two or three dimensional data used in geographic 

information processing. In what follows, we will mainly use a 

rectangular shaped two dimensional data space for simplicity of 

our discussion.  

In the proposed method, rectangular shaped cluster regions, 

called “hotspots” are detected and exploited for organizing 

buckets hierarchically. The use of hotspots in constructing 

histograms can effectively reduce the accuracy degradation caused 

by skewness mentioned in Section 1.  

3.1 Sketch of the Proposed Method 
We first describe a sketch of our proposed method that shows 

the idea of a histogram constructed by STHistogram. In the 

proposed method, hotspots in the data space are recursively found 

and made as buckets, which forms a hierarchy of buckets called a 

hotspot tree.  

Figure 2 illustrates construction of a hotspot tree. Suppose a 

data set and the total number of buckets for a histogram are given. 

Initially, bucket Broot that is the minimum bounding rectangle for a 

whole data set is made as the root of a hotspot tree. Next, within 

bucket Broot, we find hotspots and organize them as children of 

Broot in the hotspot tree, i.e., buckets B1 and B2 in the figure. The 

number of children of Broot, “two” in this case, depends on both 

the distribution of a data set and conditions for a certain region to 

be a hotspot. The similar process continues until the total number 

of buckets in the hotspot tree becomes the predefined number of 

buckets for the histogram. How to find hotspots within a bucket, 

conditions for a certain region to be a hotspot and the details of 

how to organize a hotspot tree will be discussed in the following 

B3

Bucket Broot

Broot

B1

B4

B2

B5

B1

B2

B3

B4

B5

(a) Regions of buckets (b) Hotspot tree
 

 

 

Figure 2: An example histogram constructed by the proposed 

STHistogram. 



sections. Note that a hotspot tree is our target histogram, so a 

node in the hotspot tree and a bucket will be used interchangeably. 

Note also that all the buckets, except Broot, are nested within other 

buckets in the higher levels of the hotspot tree. 

3.2 The Concept of a Hotspot 
A hotspot in two dimensional data space is a rectangular region 

where objects are closely located together with a high density, and 

satisfies certain conditions described in Definition 2. Let the 

“density” be “frequency/size”, as usual. 

DEFINITION 1 (RELATIVE DENSITY OF A REGION). For a 

subregion R in a bucket B, the relative density of R with respect to 

bucket B, denoted by RelativeDensityB(R), is defined as  

RelativeDensityB(R) = density(R)/density(B). 

Informally, a hotspot R is the subregion whose density is at 

least k times greater than the density of the enclosing bucket B, for 

some k. The value k is the minimum value of the relative density 

of region R to the enclosing bucket B so that region R can be a 

hotspot. 

EXAMPLE 2. Let R be a subregion in a bucket B. Suppose that 

we use k = 2. Suppose also that size(R) = (1/4)∙size(B) and the 

number of objects in R is the half of the number of objects in B. 

Then, RelativeDensityB(R) = 2, i.e., the density of R is two times 

greater than that of B, and hence R is a hotspot. 

When bucket B is the nearest enclosing bucket of subregion R 

(e.g., in Figure 2 the nearest enclosing bucket of bucket B3 is 

bucket B1), we will use RelativeDensity(R) to denote 

RelativeDensityB(R). That is, we omit “B” in RelativeDensityB(R) 

if bucket B is the nearest enclosing bucket of region R.  

In the following, we use two parameters f and s for definition of 

a hotspot. Basically, determination of a hotspot is based on the 

density of a region, which also depends on the size of a region and 

the frequency of objects in that region. Thus, in the following 

definition, instead of simply using the density parameter k as in 

Example 2, we use the size parameter s and the frequency 

parameter f. For a region R, let freq(R) denote the number of 

objects in R. freq(R) will be called “the object frequency of R”. 

DEFINITION 2 (HOTSPOT).  

(1) Suppose there is a bucket B whose size and object 

frequency are S and F, respectively. Given two variables s and f 

such that s > 1 and s ≥    f, a rectangular subregion R of bucket B 

that satisfies the following conditions (1.1), (1.2), and (1.3) is a 

hotspot. 

(1.1) size(R) ≤ S/s. 

(1.2) freq(R) ≥ F/f. 

(1.3) The shape of R is the same as that of B. 

(2)  Any two hotspots in the same nearest enclosing bucket, i.e., 

any two sibling nodes in a hotspot tree, are mutually exclusive.  

In the definition of a hotspot, condition (1.1) is called “size-

condition”, (1.2) is called “frequency-condition”, and (1.3) is 

called “shape-condition”. Here, the definition of “the same shape” 

in condition (1.3) is as follows: A rectangular region can be 

defined by two points, i.e., a bottom-left point and a top-right 

point. Consider a rectangular region Ra whose bottom-left and 

top-right points are (ax1, ay1) and (ax2, ay2), respectively. Consider 

also a rectangular region Rb defined by two points (bx1, by1) and 

(bx2, by2) in the same manner. We say that the shapes of Ra and Rb 

are the same if  (ay2 − ay1)/(ax2 − ax1) = (by2 − by1)/(bx2 − bx1). 

Condition (2), i.e., the last part of the definition, stipulates that a 

set of hotspots in the same nearest enclosing bucket must not 

overlap with one another.  

The variable s in condition (1.1) is used to specify the size (i.e., 

less than or equal to S/s) of a hotspot. The variable f in condition 

(1.2) is used to specify the minimum object frequency (i.e., F/f ) of 

a hotspot. For example, s = 4 and f = 2 says the following 

condition: In order for a region R to be qualified as a hotspot, the 

size of R must be at most one-fourth of the size of the enclosing 

bucket B, and the object frequency of R must be at least one-half 

of the object frequency of B. In our method, the values of s and f 

are not user parameters, but are dynamically determined during 

construction of a hotspot tree, based on the number of hotspots to 

be detected and the degree of skew in data distribution. This will 

be explained in Section 3.4. Condition (1.3), i.e., the shape-

condition, is only for computational simplicity. This is because 

the complexity of the problem will be overwhelmingly high if 

rectangles with all possible shapes are considered. 

PROPERTY 1. For any bucket, the number of hotspots within it is 

at most         

EXAMPLE 3. Consider three rectangular subregions , , and  

in region B as in Figure 3(a). The object frequencies and sizes of 

B and three subregions are described in Figure 3(b). If we use s = 

4 and f = 2, subregion  is a hotspot while  and  are not. 

Subregion  does not satisfy the frequency-condition (i.e., 7 < 

32/2), and subregion  violates the shape-condition (i.e., the 

shape of  is not the same as that of B). 

PROPERTY 2. For a hotspot R, RelativeDensity(R) is at least s/f.  

This property is a direct consequence of Definition 1 and 

Definition 2. 

REMARK 1. In Definition 2, “s > f ” would be better than “s ≥ f ” 

for the general meaning of a hotspot. We include the equality to 

make our proposed method work well even for the case that data 

is uniformly distributed. This will be explained in Section 3.4.  

3.3 Detecting Hotspots 
Let S and F denote the size and the object frequency of a region 

D, respectively. s and f are parameters for a hotspot as in 

Definition 2. To detect a hotspot in region D, we may need to 

investigate all the subregions of D i) that have the same shape 

Region B

Region 

Region 

Region 

Region
Object 

Frequency
Size

B 32 32

 22 8

 7 8

 16 6

(a) Region and subregions (b) Information about regions 
 

 

Figure 3: An example of the hotspot. 
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with D, and ii) whose sizes are less than or equal to S/s by 

Definition 2. Though any subregion R satisfying the above 

conditions can be a potential candidate for a hotspot, investigating 

all such subregions is computationally intractable, i.e., the number 

of such subregions is too much to be investigated. Thus, for 

computational simplicity, we will use the rectangle of size S/s that 

has the same shape with D as the basic unit for investigating a 

hotspot. Besides computational convenience, this policy can 

prevent too many hotpots from being produced, by clustering 

several closely located tiny clusters into a single hotspot.  

The following is a naive method that searches all subregions 

satisfying the frequency condition, the shape condition, and the 

size condition with the size equal to S/s. 

(1) Consider every rectangle R that satisfies the following.  

(a) The size of R is S/s.  

(b) R has the same shape as the enclosing region D.  

(c) The bottom-left corner of R is (xi, yi) such that xi is any 

x-value of an object in region D and yi is any y-value of an 

object in D. Here, the x-value (or y-value) of an object 

denotes the value of the X-axis (or the Y-axis) of the object. 

(2) Check if the number of objects in R is greater than or equal 

to F/f. 

Let N be the total number of objects, i.e., the object frequency 

of a given region. The number of all the possible subregions is N2, 

and the examination of each subregion on the frequency-condition 

requires O(N) time. Therefore, the complexity of this naive 

method is O(N3).  

In what follows, we propose an algorithm that identifies 

hotspots more efficiently. The MPF condition in Property 3 below 

is useful to reduce the number of possible candidate regions. 

DEFINITION 3. Let R be a hotspot in a region D. Let the bottom-

left corner and the top-right corner of R be (xi, yi) and (xj, yj), 

respectively. The projected object frequency of R on the X-axis 

denotes the number of objects in D whose x-values are in [xi .. xj]. 

The projected object frequency of R on the Y-axis is defined in the 

same manner. 

PROPERTY 3. (MINIMUM PROJECTED FREQUENCY (MPF) 

CONDITION). Let R be a hotspot in a region whose object 

frequency is F. Then, both of the projected object frequencies of R 

on the X-axis and the Y-axis are greater than or equal to the 

minimum object frequency (i.e., F/f ) for the hotspot. 

EXAMPLE 4. Suppose that f = 2 is the frequency-condition for a 

hotspot. Let h be a hotspot in region D as shown in Figure 4. The 

object frequencies of h and D are 22 and 32, respectively. The 

projected object frequency of h on the X-axis and the projected 

object frequency of h on the Y-axis of the hotspot are 24 and 28, 

respectively. Each value is greater than the minimum object 

frequency (= 32/2) for the hotspot.  

In Figure 5, we present a hotspot detection algorithm for two 

dimensional data, called Algorithm Detect2DiHotspots. In this 

algorithm, we first compute the width and the height of hotspots 

by using the size- (i.e., S/s) and shape-conditions. Then, for only 

intervals of the X-axis whose projected object frequency is greater 

The projected object frequency

on X-axis: 24

hotspot h

The projected

object frequency 

on Y-axis: 28

Region D (object frequency: 32)

 

Figure 4: An example of the MPF condition. 

ALGORITHM Detect2DiHotspots(D, O, s, f ) 

INPUT: D – a two dimensional region (object frequency = F). 

    O – a set of two dimensional point objects in D,  

each of which is represented by (xi , yi). xi and yi are    

values of the X-axis and the Y-axis of the object. 

 s – value specifying the size (= S/s) of a hotspot. 

f – value specifying the minimum object frequency (= F/f   ) of a hotspot. 

OUTPUT: SetOfHotspots – a set of hotspots. 

1: SortedListX  Sort objects in O based on the x-values  

in nondecreasing order; 

2: SortedListY  Sort objects in O based on the y-values 

in nondecreasing order; 

3: w  (1/s1/2)∙the-width-of-D;   /* w is the width of the hotspot */ 

4: h   (1/s1/2)∙the-height-of-D;   /* h is the height of the hotspot */ 

5: Let oi represented by (xi , yi) be the first object in SortedListX;   

6: WHILE (oi exists) DO { 

/*   Let W denote the range [xi .. (xi + w)], i.e., a width interval on the X-axis. */ 

/*   Let freq(W) denote a frequency of objects whose x-values are in W. */ 

7:     IF ( freq(W) ≥ F/f   ) THEN { 

/*   Examine sub-regions whose width is [xi .. (xi + w)]. */ 

8:        SortedCandiListY  Sort objects in SortedListY based on the y-values 

whose x-values are in W; 

9:        Let oj represented by (xj, yj) be the first object in SortedCandiListY; 

10:      WHILE (oj exists) DO { 

/*   Let H denote the range [yj .. (yj + h)], i.e., a height interval on the Y-axis. */ 

/*   Let freq(H) denote a frequency of objects in SortedCandiListY 

whose y-values are in H. */ 

11:          IF ( freq(H) ≥ F/f   ) THEN { 

/*   Let a rectangle whose bottom-left and top-right points  

are (xi , yj) and (xi + w, yj + h) be R. */ 

12:              R’ AdjustDataSpace(R); 

13:              IF (the rectangle R’ does not overlap with any rectangle  

in SetofHotspots) THEN { 

14:                 Add R’ into SetOfHotspots; 

15:                 Remove objects inside R’ from SortedListX and SortedListY. 

16:                 oj  the next object in SortedCandiListY whose  

y-value is greater than (yj + h);  

17:               }  

18:           }  

19:           ELSE oj  the next object in SortedCandiListY; 

20:        } // END-OF-WHILE 

21:    }  

22:    ELSE oi  the next object in SortedListX; 

23: } // END-OF-WHILE 

24: RETURN SetOfHotspots;     

Figure 5: A hotspot detection algorithm. 



than or equal to the minimum object frequency (i.e., F/f ) for the 

hotspot, we continue the exploration (Line 7). That is, for each 

height interval of the Y-axis, check if each candidate region 

satisfies the frequency-condition for the hotspot (Line 11). In the 

algorithm, a width (or height) interval is equal to (1/s1/2)*width-

(or height)-of-region-D. This stems from the size-condition (i.e., 

S/s) and the shape-condition. When a region satisfying the size-, 

shape-, and frequency-conditions does not overlap with any other 

hotpots ever detected, it is decided to be a hotspot (Lines 12~14).  

AdjustDataSpace in Line 12. R’ in Line 12 denotes the minimum 

bounding rectangle of the objects in R, as shown in Figure 6. R 

and R’ may be the same rectangle in some cases, but the size of R’ 

will be less than that of R in general. Since the objective of 

Algorithm Detect2DiHotspots is to find a region in which a 

collection of objects is densely clustered, R’ captures more 

accurate data space information for the cluster of objects than R 

does. 

Accelerating the algorithm. The proposed algorithm exploits the 

MPF condition on the X-axis in Property 3 to reduce the search 

space. In other words, if the MPF condition on the X-axis is not 

satisfied in Line 7, we skip subregions whose width is [xi .. (xi + 

w)], and advance to the next step in Line 22. We can also utilize 

the following to make a hotspot detection procedure more 

efficient:  

 Swift Examination of the MPF condition. Line 7, which 

examines the MPF condition on the X-axis, can be performed 

in a constant time as follows: Let the position of oi in the 

SortedListX be p. The MPF condition is satisfied, if and only 

if the x-value of the object in SortedListX[p + (F/f   ) – 1] is less 

than or equal to xi + w. Similarly, Line 11 can be performed in 

a constant time.  

 Rapid Acquisition of the SortedCandiListY. Line 8 sorts 

objects based on the values of the Y-axis, whose x-values are 

in W. This step can be performed in O(N) by retrieving the 

objects from the SortedListY, whose x-values are in W.  

 Pruning the last part of the SortedCandiListY (or 

SortedListX). In Line 10, even though there exists an object in 

SortedCandiListY, we can stop the loop of Lines 10~20 if the 

total number of objects left in SortedCandiListY is not enough 

to satisfy the frequency-condition (i.e., is less than F/f ). 

Likewise, in Line 6, we stop the hotspot detection process if 

the total number of objects left in SortedListX is less than F/f. 

THEOREM 1. The worst case time complexity of Algorithm 

Detect2DiHotspots is O(N 

2), where N is the object frequency of 

the given region.  

PROOF. In Figure 5, Lines 1~2 take O(N∙logN) time to sort N 

objects. The while-loop starting from Line 6 repeats at most (N – 

(N/f ) + 1) times by using the pruning the last part of the 

SortedListX. Line 7 takes a constant time by using the swift 

examination of the MPF condition. Line 8 takes O(N) time by 

using the rapid acquisition of the SortedCandiListY. Lines 10~20 

iterate at most (N – (N/f ) + 1) times by using the pruning the last 

part of the SortedCandiListY. Line 11 also takes a constant time 

by using the swift examination of the MPF condition. 

Consequently, the complexity of Algorithm DetectHotspots is 

O(N2).                                                                                            □ 

We can easily extend Algorithm Detect2DiHotspots to the 

algorithm for three dimensional data. This algorithm, called 

Algorithm Detect3DiHotspots, is a straightforward extension of 

Algorithm Detect2DiHotspots. Because of space limitation, we 

omit the details of Algorithm Detect3DiHotspots in this paper. 

The following corollary, though the details of the algorithm as 

well as the proof of it are omitted, is an immediate consequence of 

the fact that Algorithm Detect3DiHotspots is a straightforward 

extension of Algorithm Detect2DiHotspots to handle one more 

dimension in the data. 

COROLLARY 1. The worst case time complexity of Algorithm 

Detect3DiHotspots is O(N3), where N is the object frequency of 

the given region. 

For convenience, Algorithm Detect2DiHotspots and Algorithm 

Detect3DiHotspots will be collectively called Algorithm 

DetectHotspots if there is no ambiguity.  

Note that, depending on the policy to detect hotspots, there can 

be various algorithms that are different from our Algorithm 

DetectHotspots. The number of hotspots and their locations found 

in different algorithms can be different from those found in 

Algorithm DetectHotspots. However, any hotspot detection 

algorithm can be used in Algorithm ConstructHotspotTree 

discussed in the next section as long as if it correctly finds 

hotspots that satisfy only condition (2) in Definition 2, i.e., any 

two hotspots found in the current bucket are mutually exclusive. 

3.4 Constructing Histograms Based on 

Hotspots 
In this section, we present how to construct our proposed 

histogram. The proposed method detects hotspots by using 

Algorithm DetectHotspots, and organizes them into a hierarchy of 

buckets, i.e., a hotspot tree. We start with bucket Broot that 

corresponds to the minimum bounding rectangle for a given entire 

data set, and construct a hotspot tree rooted by the node Broot. 

Figure 7 shows the proposed algorithm ConstructHotspotTree that 

recursively constructs a hotspot tree. This algorithm requires as 

input a bucket B, a set of objects O, and the number of buckets NB 

to be constructed within B. The initial call of the algorithm is 

ConstructHotspotTree(Broot, DataSet, p), where DataSet and p are 

the entire data set and the number of buckets to be constructed in 

Broot, respectively. At each recursive call to ConstructHotspotTree, 

we first determine the size and minimum object frequency for a 

hotspot in this recursive step (Lines 1~2), i.e., the input 

parameters s and f of Algorithm DetectHotspots. We then detect 

hotspots in bucket B by using Algorithm DetectHotspots (Line 3). 

The detected hotspots are organized as children of bucket B in the 

hotspot tree (Line 4). Here, for each newly created node h, the 

Region D

R : a rectangle detected in Line 12 

of Algorithm DetectHotspots

R’ : the minimum

bounding rectangle

of the objects in R

 

Figure 6: Adjustment of data space for a hotspot. 



related statistics, i.e., data space and object frequency are 

maintained within h. We use NB for the value of f, which makes 

the number of hotspots detected be less than or equal to NB 

according to Property 1. If the number of hotspots detected is 

equal to NB, the current recursive step completes its execution and 

returns. Otherwise, we proceed to construct more buckets that will 

become the next level nodes in the hotspot tree (Lines 6~11). That 

is, for each hotspot h found at the current step, we detect hotspots 

within h. These hotspots will be organized as children of h at the 

next recursive step. This process continues until no more buckets 

can be constructed.  

Input parameters s and f of Algorithm DetectHotspots (Lines 1 

and 2 in Figure 7). Let us consider NB ≥ 2 first. We use NB for the 

value of f if NB ≥ 2. This is because if we use f = NB, the number 

of hotspots found in a bucket B, denoted by NB’, does not exceed 

NB by Property 1.  

Now, consider the value of k that denotes the minimum relative 

density for a hotspot. In general, k can be any real number greater 

than or equal to 1. Note that k = 1 means the density of a hotspot 

can be at least the same as the density of its enclosing bucket. It 

also means s = f by Property 2. This implies that the size of a 

subregion to be investigated for a hotspot in Algorithm 

DetectHotspots is 1/NB of the size of B because we use f = NB as 

mentioned above. Suppose k = 1 and the entire data set has 

perfectly uniform distribution. Then, our hotspot tree will have 

only two levels, i.e., all the nodes except the root node are at the 

same level, which effectively reduces to a histogram similar to the 

conventional one. Suppose k = 1 but the distribution of data is 

skewed. In bucket B (that is Broot in the initial case), consider NB 

number of disjoint subregions, each size of which is 1/NB of the 

size of B. Some of them are dense subregions and the others are 

sparse subregions. Since sparse subregions are not hotspots by 

definition, the number of dense subregions will be less than NB. 

Then, the recursive step of our algorithm will continue. We will 

use k = 1 in our algorithm in Figure 7, which allows our algorithm 

to work well regardless of uniform distribution or skewed 

distribution of data. This implies that NB is used for the value of s 

if NB ≥ 2. The exceptional case is NB = 1. Since a child bucket 

with s = 1 (i.e., finding a subregion whose size is equal to the size 

of the enclosing bucket) does not make sense we use s = 2 and f = 

2 in this case.  

If a value greater than one is used for k, there is a possibility 

that Algorithm DetectHotspots may not find any hotspot in some 

recursive step. This case occurs when the data in a bucket within 

which we want to find hotspots is uniformly distributed. Thus, if 

we use the value of k greater than one, the algorithm in Figure 7 

needs a little modification to handle the case that Algorithm 

DetectHotspots does not find any hotspot. We will not discuss this 

case further because we will use k = 1, i.e., s = f = NB if NB ≥ 2 in 

our algorithm.  

Compute NBi, i.e., the number of buckets to be constructed in 

bucket Bi (Line 7 in Figure 7). If the number of hotspots found 

in bucket B is less than the predefined number of buckets (i.e., NB’ 

< NB in Line 5), then for each bucket Bi constructed at the current 

step, Algorithm ConstructHotspotTree is invoked recursively to 

construct more buckets (Line 9). At this time, the number of 

buckets to be constructed in Bi, denoted by NBi, needs to be 

determined (Line 7). We compute NBi in proportion to the relative 

skew of Bi defined below.  

DEFINITION 4 (RELATIVE SKEW OF A BUCKET). Let a bucket B 

have n children. For a child node bucket Bi, i = 1, … , n, of 

bucket B, the relative skew of Bi, denoted by RelativeSkew(Bi), is 

defined as follows.  

RelativeSkew(Bi) = skew(Bi)     

Here, skew(Bi) denotes the skew of distribution in bucket Bi. 

skew(Bi) is computed as                [10], i.e., the sum of squares of 

absolute errors for all the locations within Bi. xr is the real object 

frequency at location r and     is the estimate of the object 

frequency based on the uniform distribution assumption within Bi.  

Note that, in the definition, the unit of location is a cell when 

the entire data space is considered as a grid, as commonly used in 

the literature [10, 20].  

EXAMPLE 5. Consider a construction process of a hotspot tree 

as in Figure 8. Suppose that the number of buckets to be 

ALGORITHM ConstructHotspotTree(B, O, NB) 

INPUT: B – a bucket that is the root node of a hotspot tree for a data set O. 

           O – a set of geographic objects in bucket B. 

        /* We assume that O is either a set of two-dimensional point objects 

            or a set of three-dimensional point objects. */ 

NB – the number of buckets to be constructed within B. 

OUTPUT: a hierarchy of buckets rooted by bucket B.  

/*  Determine the input parameters s and f of   

Algorithm DetectHotspots. */ 

1: s  max(NB, 2);        /*  explained later. */ 

2: f  max(NB, 2);        /*  explained later.  */ 

/*  Detect hotspots within bucket B by using  

Algorithm DetectHotspots.  */ 

3: SetOfBuckets  DetectHotspots(a minimum bounding region  

for objects in B, O, s, f); 

4: Make buckets in SetOfBuckets children of B; 

/*  NB’ denotes the number of buckets in SetOfBuckets. */ 

/*  Note that NB’ ≤ NB. */ 

5: IF (NB’ < NB) THEN { 

6:    FOR EACH bucket Bi in SetOfBuckets DO { 

/*  NBi denotes the number of buckets to be constructed in Bi. */ 

7:       Compute NBi for bucket Bi;      /* explained later. */ 

8:       IF (NBi ≥ 1) THEN { 

/*  Detect hotspots within bucket Bi recursively. */ 

9:          ConstructHotspotTree(Bi, a data set in Bi, NBi); 

10:      }  

11:   } // END-OF-FOR-EACH 

12:}         

Figure 7: A hotspot tree construction algorithm. 
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Figure 8: An example of a construction process of a hotspot. 
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constructed in bucket Broot is 4. Suppose also that within Broot, two 

hotspots are found, i.e., buckets B1 and B2 in the figure. Then, we 

need to construct two more buckets within B1 and B2. Each 

number of buckets to be constructed in B1 and B2, i.e., NB1 and 

NB2 is computed in proportion to the relative skew of B1 and B2. 

That is,  

 

 

If the skew of distribution in B1 is much higher than that in B2, 

then NB1 = 2 and NB2 = 0. Hence, only within B1, we attempt to 

find hotspots and organize them as children of B1, i.e., buckets B3 

and B4 in the figure. 

Let B1, B2, … , Bn be the children of bucket B, and m be the 

number of buckets to be constructed in some of B1, B2, … , Bn. 

Then, as in Example 5, NBi = m∙RelativeSkew(Bi). 

THEOREM 2. Let F(N) be the worst case computing time for 

Algorithm DetectHotspots where N is the number of objects in the 

whole data set. Then the worst case time complexity of Algorithm 

ConstructHotspotTree is O(p∙F(N)), where p is the number of 

buckets for a histogram.  

PROOF. Let T(N) denote the computing time of Algorithm 

ConstructHotspotTree for N objects. If the initial step of 

ConstructHotspotTree finds h number of hotspots, then T(N) = 

T(N1) + T(N2) + … + T(Nh) + f(N). Here, Ni denotes the number of 

objects in the i-th hotspot and f(N) denotes the computing time for 

DetectHotspots. The worst case of the algorithm occurs when only 

a single hotspot is found, i.e., h = 1, whose object frequency is N 

– 1, at every recursive step. In this case, the above equation can be 

rewritten as T(N) = T(N – 1) + f(N) = T(N – 2) + f(N – 1) + f(N) = 

f(N – p + 1) + … + f(N – 1) + f(N). Since F(N) is the worst case of 

f(N), the proof follows.                                                                  □ 

Note that the worst case time complexity of Algorithm 

ConstructHotsptTree that uses Algorithm DetectHotspots 

described in Section 3.3 is O(p∙N 

2) for a two-dimensional data set 

and is O(p∙N 

3) for a three-dimensional data set. However, if we 

can come up with a new hotspot detection algorithm whose worst 

case time complexity is better than Algorithm DetectHotspots in 

Section 3.3, then the worst case time complexity of Algorithm 

ConstructHotsptTree can also be improved. 

3.5 Estimating Selectivities Using Our 

Proposed Histogram 
In this section, we explain how to compute a selectivity for a 

given query based on the histogram constructed by our method. 

EXAMPLE 6. Consider a histogram H consisting of five buckets 

Broot, B1, B2, B3, and B4. Visual representation in two dimensional 

space and the hotspot tree representation of H are shown in 

Figures 9(a) and 9(b), respectively. The object frequencies, 

ranges of the X-axis, ranges of the Y-axis, and sizes of buckets 

are described in Figure 9(c). Consider also a query q whose 

region is (25 ≤ X ≤ 67, 5 ≤ Y ≤ 55). Then, the selectivity of q 

based on H is computed as follows. We first find leaf nodes in the 

hotspot tree, i.e., buckets B2, B3, and B4 in the figure. Let size(Bi, 

q) denote the size of Bi that overlaps with the region of query q. 

Then, 

size(B2, q) = (67 − 55)∙(35 − 10) = 300, 

            size(B3, q) = (29 − 25)∙(48 − 39) = 36, and 

            size(B4, q) = (35 − 25)∙(36 − 27) = 90. 

Let est(Bi, q) denote the selectivity estimate for the overlapping 

region between bucket Bi and query q. 

est(Bi, q) = size(Bi, q)/size(Bi)∙freq(Bi). 

Thus, est(B2, q) = 300/1000∙36 = 10.8, est(B3, q) = 36/126∙8 = 2.3, 

and est(B4, q) = 90/126∙6 = 4.3. Next, we go up to the parent 

nodes of buckets B2, B3, and B4, i.e., buckets B1 and Broot in the 

figure. Now, for each bucket B1 and Broot, check if the selectivities 

of its all the children have already been computed. Bucket B1 is 

the only case. In the region of B1, selectivity estimates of q for 

buckets B3 and B4 have already been computed. Let Bi’ denote the 

region of Bi that does not overlap with those of its children. 

Then, size(B1’) = size(B1) – [size(B3) + size(B4)] = 748, 

size(B1’, q) = size(B1, q) – [size(B3, q) + size(B4, q)] = 374, 

and   freq(B1’) = freq(B1) – [freq(B3) + freq(B4)] = 26. 

Since there is no hotspot in B1’, we assume that 26 objects are 

uniformly distributed in B1’ whose size is 748. So, est(B1’, q) = 

size(B1’, q)/size(B1’)∙freq(B1’)= 374/748∙26 = 13. Thus, est(B1, q) 

= est(B3, q) + est(B4, q) + est(B1’, q) = 2.3 + 4.3 + 13 = 19.6. Now, 

since selectivity estimates of all the children of Broot have been 

computed, we can compute the selectivity estimate of Broot using 

the same procedure just mentioned. 

size(Broot’) = size(Broot) – [size(B1) + size(B2)] = 4000, 

the region of query qBroot

B1

B2

B3

(a) Representation in 2-dimensional space (c) Information about buckets and query q

Region
Object

Frequency
X-range Y-range Size

Broot 100 0~100 0~60 6000

B1 40 5~45 25~50 1000

B2 36 55~95 10~35 1000

B3 8 15~29 39~48 126

B4 6 21~35 27~36 126

q ? 25~67 5~55 2100

B4

B3

Broot

(b) Hotspot tree

B1

B4

B2

 
 

Figure 9: Selectivity estimation based on the histogram constructed by our method. 
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size(Broot’, q) = size(Broot, q) – [size(B1, q) + size(B2, q)] = 1300, 

freq(Broot’) = freq(Broot) – [freq(B1) + freq(B2)] = 24, and 

est(Broot’, q) = 1300/4000∙24 = 7.8.  

Thus, est(Broot, q) = est(B1, q) + est(B2, q) + est(Broot’, q) 

= 19.6 + 10.8 + 7.8 = 38.2.  

Let Bc denote a child node of bucket B, and B’ denote a region 

of B except its children. The equation that computes est(B, q), i.e., 

the selectivity estimate of a query q for bucket B, is as follows. 

...
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Algorithm ComputeSelectivity in Figure 10 computes a 

selectivity estimate of a given query q using our proposed hotspot 

tree. Note that Algorithm ComputeSelectivity as well as 

Algorithm ConstructHotspotTree is not affected by the dimension 

of data.  

4. HOTSPOT FOREST 
Until now, our proposed histogram is constructed based on the 

existence of hotspots only. This strategy may have a small 

problem when query ranges are in the areas where no hotspot is 

found. Consider the bucket Broot that is the minimum bounding 

rectangle for the entire data space. Suppose that two hotspots B1 

and B2 within Broot are found by Algorithm DetectHotspots. Let B‟ 

be the subregion of Broot that does not overlap with B1 and B2. 

According to our algorithms described so far, all the remaining 

buckets will be constructed within B1 and B2, and no bucket will 

be formed in B‟. Note that even though there is no hotspot in B‟, 

this does not necessarily mean that data is uniformly distributed in 

B‟. No existence of a hotspot in B‟ simply means that within B‟ 

there is no subregion that satisfies the hotspot conditions in 

Definition 2. For a query whose range overlaps with B1 or B2, our 

histogram will give a good estimate in general. However, for a 

query whose entire range or most of whose range overlaps with B‟, 

the accuracy of our estimate could depend on the distribution of 

B‟. Figure 11 illustrates this case. Suppose that the minimum 

object frequency for a hotspot is 7 in Figure 11(a). In the figure, 

B1 and B2 are hotspots while the region R is not. This is because in 

R there are only 6 objects, which does not satisfy the frequency-

condition for our hotspot. Consider two query ranges Q1 and Q2 

shown in Figure 11(b). Our histogram will give a good estimate 

for Q1, but will not for Q2. If a distribution of query ranges (with 

respect to the locations in the data space) is uniform, i.e. query 

ranges such as Q1 and Q2 will be given equally likely, we also 

need to care about subregions such as R in the figure.  

To alleviate the problem mentioned above, we can use slightly 

modified approach such that we build more than one hotspot tree, 

each of which covers a different subregion of the entire data space. 

Let p be the number of buckets to be constructed for a histogram. 

Initially, we partition the entire data space into p disjoint 

segments of approximately equal sizes. Remove segments that 

have no data. Then, combine two adjacent segments Si and Sj if 

skew(Si  Sj) ≤ skew(Si) + skew(Sj) where Si  Sj denotes a 

segment that results from combining Si and Sj. This process is 

repeated until no two adjacent segments are combined. Then, we 

construct a hotspot tree for each segment resulting from the above 

process. This set of hotspot trees is called the hotspot forest. As in 

Section 3.4, the number of buckets to be constructed in each 

hotspot tree is computed in proportion to its relative skew. Note 

that the worst case time complexity for constructing a hotspot 

forest does not change, i.e. is equal to the one in Theorem 2. Now, 

given a range query, a selectivity estimate of the query is the total 

sum of estimates for each hotspot tree. 

The underlying philosophy for building hotspot forest instead 

of a single hotspot tree can be roughly stated as follows: For a 

subregion R of size 1/p of the entire data space, we want to 

allocate at least one bucket unless there is any region enclosing R 

whose skew is lower than the skew of R. Note that when a data set 

is perfectly uniform, a hotspot forest will be the same as the 

histogram of the well-known equal-width approach. 

Figure 12(a) shows the two-dimensional Sequoia data set [25], 

which is a well-known real-life data set. This data set is publicly 

available and has been used in performance analysis tasks [6, 30]. 

Figure 12(b) provides our hotspot forest histogram for the 

Sequoia data set. We also present the MinSkew [1], GenHist [11, 

12], and RK-Hist [8] histograms for the data set in Figure 12(c), 

12(d), and 12(e), respectively. 

5. PERFORMANCE EXPERIMENTS 
In order to study the effectiveness of our proposed histogram, 

we have conducted extensive experiments with real-life data as 

ALGORITHM ComputeSelectivity(H, q) 

INPUT: H – a hotspot tree rooted by bucket Broot, q – a query. 

OUTPUT: the selectivity of query q. 

(1)  /* Processing at the leaf nodes: */ 

Let SetLeaf be a set of leaf nodes, i.e., buckets, in H  

whose regions overlap with the region of q. 

For each node Bi in SetLeaf, compute 

 

If the entire region of q is contained in the region of         

return   

Otherwise, for each Bi in SetLeaf, go up to the parent node  

and continue Step (2). 

(2)  /* Processing at the nonleaf nodes: */ 

Let SetNonLeaf be a set of nodes, each of which is the parent 

of some node Bi whose est(Bi, q) has been computed. 

If |SetNonLeaf| = 1, return est(B, q), where B is the sole node in SetNonLeaf. 

Otherwise, find a node B that is in the lowest level of  

the hotspot tree among nodes in SetNonLeaf, and compute est(B, q). 

Go up to the parent node, and repeat this step, i.e., Step (2).    

Figure 10: The selectivity estimation algorithm for our 
proposed histogram. 
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Figure 11: A hotspot tree and two query ranges. 
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well as synthetic data, and compared the accuracy of our results 

with those of the MinSkew [1], GenHist [11, 12], and RK-Hist [8] 

histograms. (MinSkew and GenHist require initially to divide the 

data space into a grid of cells. We used a grid with 104 cells as in 

[1].) In evaluating our method, we have used hotspot forests 

described in the previous section. All experiments reported in this 

section have been performed on a Windows server 2003 

workstation with two Xeon 3GHz quad-core processors and 8GB 

memory. The algorithms have been implemented in Visual C++ 

2008. 

Data sets. We generated synthetic data sets, referred to Cluster 

data sets, with many clusters and therefore high correlations 

between attributes, as suggested in [12]. The parameters of the 

data generator are i) the dimension of the data space, ii) the total 

number of clusters, and iii) the maximum size of a cluster, 

represented by the ratio of the cluster size to the domain size, set 

to 2 (and 3), 50, and 1%, respectively in our experiments. The 

clusters each defined as a hyper-rectangle are randomly located 

within the data space and data within each cluster are randomly 

distributed. Each synthetic data set contains 1,000,000 data 

objects in the space of [1, 1000]d, where d is the dimension of the 

data. For our real-life data experiments, we used the following 

data sets: i) the Sequoia data set [25], which contains 62,556 

locations in California. ii) the Digital Chart of the World data set1, 

which contains 19,499 populated places in the United States of 

America and Mexico. iii) the North East data set2, which contains 

123,593 postal addresses in three metropolitan areas, i.e., New 

York, Philadelphia, and Boston. iv) the Greece Cities data set3, 

which contains 5,922 cities and villages in Greece. v) the Geevor 

data set from the Practical Geostatistics 2000 [7], which contains 

5,445 locations of tin mines in Cornwall, England and the grade 

of tin from each tin mine. vi) the Sample data set from the 

Practical Geostatistics 2000 [7], which contains 21,577 locations 

of gold mines and the degree of gold from each gold mine. Figure 

13 shows all the data sets except that shown in Figure 12(a). Note 

                                                                 

1, 2, 3http://www.rtreeportal.org 

that the Sequoia, the Digital Chart of the World, the North East, 

and the Greece Cities data sets are two dimensional data sets 

while the Geevor and the Sample data sets are three dimensional 

data sets. The Cluster (2D) and the Cluster (3D) data sets are 

synthetic data sets, each of which is two dimensional and three 

dimensional, respectively. 

Buckets, Quality Measure, and Test Queries. To test the 

accuracy of histograms with various number of buckets, we 

constructed histograms with various number of buckets (50~1000 

buckets). Our comparisons are based on the average relative error, 

which is commonly used as a performance metric in the selectivity 

estimation, described below: Let θ be the actual object frequency 

of a query q, and θ' be the estimated object frequency of q by a 

histogram. Then, the absolute error eabs and the relative error erel 

are defined as follows:  

eabs = |θ − θ'|.   erel = eabs / max{1, θ} = |θ − θ'| / max{1, θ}. 

For a set of queries, the average relative error Erel is defined as the 

sum of the relative errors for all the queries divided by the number 

of queries. For the test queries, we used 100,000 queries in each 

experiment, whose regions are randomly located within the data 

space. 

In the experiments, the performance of the histograms was 

evaluated using the following parameters: 

(1) The number of buckets in the histogram. 

(2) The size of a query region (simply called the query size).  

Figure 14 shows how varying the number of buckets affects the 

performance of histograms for the real-life data sets and the 

synthetic data sets. Note that the Y-axis is shown on a log scale 

and the size of queries is set to 5%. In general, average relative 

errors tend to be reduced in all the methods with the increasing 

number of buckets. This is because when the number of buckets 

increases, more accurate statistics can be obtained. Note that the 

histograms of the proposed method denoted by STHistogram 

work significantly better than those of other methods in many 

cases. The primary reason for the noticeable improvement is that 

 

 

 

 

 

 

Figure 13: Geographic data sets. 

     
 

 

 

 

 

Figure 12: Sequoia two-dimensional data and various histograms (50 buckets). 

(c) MinSkew histogram (b) Our proposed histogram (d) GenHist histogram (e) RK-Hist histogram (a) Sequoia data 

(a) Digital Chart of the World data (b) North East data  (c) Greece Cities data (d) Cluster (3D) data (e) Geevor (3D) data (f) Sample (3D) data 



our method effectively handles the clusters that may significantly 

degrade the accuracy of the histograms. That is, our method 

effectively detects hotspots and exploits them in constructing 

buckets. Figure 15 shows how varying the query sizes affect the 

performance of the histograms for the various data sets. Note that 

the Y-axis is shown on a log scale and the number of buckets is 

set to 500. In this figure, as the query size increases, the accuracy 

of the histogram tends to increase in all the methods. This is 

because when the query size increases, the number of buckets that 

are fully contained in the query region also increases in the 

methods. That is, the effect of buckets that partially overlap with 

the query region, which are the sources of incorrect selectivity 

estimation, reduces with the increase of the query size. As seen in 

the figures in Figure 15, the performance of the proposed 

STHistogram is much better than other methods in many cases. 

MinSkew shows relatively good accuracy for three-dimensional 

data sets, as shown in Figures 14(f)-(h) and 15(f)-(h). However, as 

noted in [1], the accuracy of MinSkew is affected by the number 

of grid cells. Sometimes, the accuracy of MinSkew considerably 

decreases, when the number of grid cells increases. In the 

experiments with the 106 number of grid cells, we have found that 

the average relative errors of MinSkew significantly increase, 

compared with those in Figures 14(f)-(h) and 15(f)-(h). 

Overall, our experimental results show that the proposed 

STHistogram provides better accuracy than other existing 

methods for real-life data sets as well as synthetic data sets. 
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Figure 15: Average relative errors for varying query sizes. 
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Figure 14: Average relative errors for varying number of buckets. 

 

 

(a) Cluster (2D) data (b) Sequoia data (c) Digital Chart of the World data (d) North East data  

(e) Greece Cities data (g) Geevor (3D) data (h) Sample (3D) data (f) Cluster (3D) data 

STHistogram MinSkew GenHist RK-Hist

(c) Digital Chart of the World data (d) North East data 

(g) Geevor (3D) data (f) Cluster (3D) data (e) Greece Cities data 

(a) Cluster (2D) data (b) Sequoia data 

STHistogram MinSkew GenHist RK-Hist

(h) Sample (3D) data 



6. CONCLUSIONS 
The histogram, which is a simple representation for distribution 

of a large data set, is widely used for selectivity estimation that 

has many applications for various types of query processing. 

Estimates for the histogram buckets that partially overlap with the 

query region are computed based on the assumption that all the 

objects in a bucket are uniformly distributed. However, it has 

been shown to be intractable to organize histogram buckets such 

that data objects in every bucket are uniformly distributed. Thus, 

in most heuristic histogram methods, there often exist clusters of 

data objects in the histogram buckets, which degrades the 

accuracy of the estimates. In this work, we have attempted to 

organize histogram buckets in such a way that the degree of skew 

due to clusters of data objects can be minimized. Our focus is on 

the histograms for two or three dimensional geographic data 

objects that have many applications in practice, such as 

geographic information processing. Through extensive 

performance experiments, we have shown that our proposed 

method provides better performance than other existing methods. 

Our proposed method does not require any user-provided 

parameters to construct a histogram, which is not the case in some 

existing methods. In our proposed method, the parameters s and f 

used to specify the size and the minimum object frequency of the 

hotspot are dynamically determined for each bucket when a 

histogram is constructed. 
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