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ABSTRACT

In this paper we investigate techniques that allow for on-line
updates to columnar databases, leaving intact their high
read-only performance. Rather than keeping differential
structures organized by the table key values, the core propo-
sition of this paper is that this can better be done by keeping
track of the tuple position of the modifications. Not only
does this minimize the computational overhead of merging
in differences into read-only queries, but this makes the dif-
ferential structure oblivious of the value of the order keys,
allowing it to avoid disk 1/O for retrieving the order keys in
read-only queries that otherwise do not need them — a cru-
cial advantage for a column-store. We describe a new data
structure for maintaining such positional updates, called the
Positional Delta Tree (PDT), and describe detailed algo-
rithms for PDT/column merging, updating PDTs, and for
using PDTs in transaction management. In experiments
with a columnar DBMS, we perform microbenchmarks on
PDTs, and show in a TPC-H workload that PDTs allow
quick on-line updates, yet significantly reduce their perfor-
mance impact on read-only queries compared with classical
value-based differential methods.

Categories and Subject Descriptors
H.2.8 [Database Management|: Database Applications

General Terms

Algorithms, Experimentation, Performance

1. MOTIVATION

Database systems that use columnar storage (DSM [8])
have recently re-gained commercial and research momen-
tum [22, 3, 3, 21], especially for performance intensive read-
mostly application areas such as data warehousing, as they
can significantly reduce the cost of disk I/O with respect to
row-wise disk storage (NSM). Modern columnar data ware-
housing systems additionally employ techniques like com-
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pression, data clustering, and replication that make them
truly read-friendly and write-unfriendly. In this paper we
address the question how such systems can still efficiently
provide update functionality.

Analytical query workloads inspect large amounts of tu-
ples, but typically only a small subset of the columns; hence
columnar storage avoids data access (I/O, CPU cache misses)
for unused columns. Three techniques are often added to
further increase performance: first, columnar systems often
store data in a certain order (or clustering), to further reduce
data access cost when range-predicates are used. Second, by
using multiple replicas of such tables in different orders, the
amount of predicates in a query workload that can bene-
fit from this increases. Data compression, finally, reduces
the data access cost needed to answer a query, because the
data gets smaller, and more data fits in the buffer pool when
compressed, reducing the page miss ratio.

The challenge facing updates in analytical column stores
is that one I/O per column (replica) is needed, hence a
single-row update that can be handled in a row-store with
a single disk I/O will lead to many disk I/Os in a column
store. These disk I/Os are scattered (random) I/Os, even if
the database users only do inserts, because of the ordered
or clustered table storage. Finally, compression makes up-
dates computationally more expensive and complex since
data needs to be de-compressed, updated and re-compressed
before being written back to disk. Extra complications oc-
cur if the updated data no longer fits its original location.

Differential Updates. Some analytical columnar database
systems, such as C-Store [22], handle updates by splitting
their architecture in a “read-store” that manages the bulk
of all data and a “write-store” that manages updates that
have been made recently. Consequently, all queries access
both base table information from the read-store, as well as
all corresponding differences from the write-store and merge
these on-the-fly. Also, in order to keep the write-store small
(it resides typically in RAM), changes in it are periodically
propagated into the read-store [22].

The topic of this paper is what data structures and algo-
rithms should be used for implementing the write-store of
a column-oriented database system that aims to support
generic update workloads (inserts, deletes, modifications;
batch or trickle). The natural “value-based” way to imple-
ment the write-store is to keep track of which tuples were
deleted, inserted or modified in a RAM-resident data struc-
ture that organizes these items in the sort key (SK) order of
the underlying read-store table and contains these keys; for
example in a RAM friendly B-tree [6]. Such a data struc-



ture can easily be modified for update queries, and can also
be merged efficiently with the read-store for read-queries by
scanning the leaves. An important side effect of the value-
based approach, however, is that all queries must scan all
sort key columns in order to perform the merge (even if those
queries themselves do not need the keys) which reduces an
important advantage of column stores.

PDT. In this paper, we propose a new data structure called
the Positional Delta Tree (PDT). PDTs are similar to counted
B-trees [23] but contain differential updates. They are de-
signed to make merging in of these updates fast by providing
the tuple positions where differences have to be applied at
update time. Thanks to that, read queries that merge in
differences do not need to look at sort key values. Instead,
the merge operator can simply count down to the next po-
sition where a difference occurs, and apply it blindly when
the scan cursor arrives there.

The key advantages of the PDT over value-based merg-
ing are (i) positional merging needs less I/O than value-
based merging, because the sort keys do not need to be
read, and (i) positional merging is less CPU intensive than
value-based merging, especially when the sort-key is a com-
pound key (common in clustering approaches) and/or non-
numerical attributes are part of the sort-key.

While the concept of positional differences sounds simple,
its realization is complex, since positions in an ordered table
are highly volatile: after an insertion or deletion, all posi-
tions of subsequent tuples change. The core of the problem is
managing a mapping between two monotonically increasing
numbers associated with tuples in a table, called the Stable
ID (SID) and current Row ID (RID). The SIDs conceptually
correspond to the consecutively ascending tuple positions
found in the read-store, but are in the current tuple order
not necessarily consecutive nor unique, just non-decreasing.

As PDTs capture updates, they also form an important
building block in transaction management. We show that
three layers of PDTs can be used to provide lock-free iso-
lation. This lock-free property is a great advantage for an
analytical DBMS designed not to compromise read-query
performance for updates. We define the basic notions on
which to base ACID properties of PDT based transactions,
and provide two PDT transformation algorithms (Propagate
and Serialize), pivotal for transaction management.

All in all, the main contribution of the paper is the PDT
data structure and its application in column stores for pro-
viding efficient transactional updates without compromising
read performance. We have fully implemented PDT-based
update management in VectorWise! (originally based on the
MonetDB /X100 prototype [3]), which we use for our exper-
imental evaluation.

Outline. The basic concepts of PDTs are introduced in
Section 2, and their working is illustrated by examples. De-
tailed algorithms for PDT update and MergeScan opera-
tors are provided in Section 3, as well as the Propagate and
Serialize algorithms for three-layer PDT-based transaction
management. We evaluate the performance of PDT based
update management in Section 5, both using microbench-
marks, as well as in a TPC-H 30GB comparison between
read-only, value-based and PDT-based query processing un-
der an update load. Finally, in Section 5 we describe related
work before concluding in Section 6.

1 . . .
See www.vectorwise.com and WWW.lIlgI‘GS.COm/VeCtOI‘WlSB.

2. DIFFERENTIALCOLUMNAR UPDATES

We first introduce the basic assumptions, concepts and
notations underlying PDTs, then explain them by example.

Ordered Tables. A column-oriented definition of the re-
lational model is as follows: each column col; is an ordered
sequence of values, a TABLE<coly,--- ,col, > is a collec-
tion of related columns of equal length, and a tuple 7 is a
single row within TABLE. Tuples consist of values aligned
in columns, i.e., the attribute values that make up a tuple
are retrievable from a column using a single positional index
value. This index we call the row-id, or RID, of a tuple.

Though the relational model is order-oblivious, column-
stores are internally conscious of the physical tuple order-
ing, as this allows them to reconstruct tuples from columns
cheaply, without expensive value-based joins [19]. The phys-
ical storage structures used in a column-store are designed
to allow fast lookup and join by position using either B-tree
storage with the tuple position (RID) as key in a highly
compressed format [10] or dense block-wise storage with a
separate sparse index with the start RID of each block.

Columnar database systems not only exploit the fact that
all columns contain tuples in some physical order that is
the same for all of them, but often also impose a particu-
lar physical order on the tuples, based on their value. That
is, tuples can be ordered according to sequence of sort at-
tributes S, typically determined by the DBA [22]. A se-
quence of attributes that defines a sort order, while also
being a key of a table we call SK (the sort key). The mo-
tivation for such ordered storage, is to restrict scans to a
fraction of the disk blocks if the query contains range- or
equality-predicates on any prefix of the sort key attributes.
As such, explicitly ordered storage is the columnar equiva-
lent of index-organized tables (clustered indices) also used
in a row-oriented RDBMS.

Ordering vs. Clustering. Multi-column sort orders are
closely related to table clustering, that organizes a large
(fact) table in groups of tuples, each group representing a cell
in a multi-dimensional cube, where those dimensional values
are typically reachable over a foreign-key link. Such multi-
dimensional table clustering is an important technique to ac-
celerate queries in data warehouses with a star- or snowflake-
schema [17, 7]. In a column-store, multi-dimensional clus-
tering translates into ordering the tuples in a table in such a
way that tuples from the same cell are stored contiguously.
This creates the same situation as in ordered columnar ta-
ble storage, where physical tuple position is determined by
the tuple values; and the machinery to handle table updates
needs to respect this value-based tuple order.

Positional Updates. An update on an ordered table is one
of (insert, delete, modify). A TABLE.insert(7,1%) adds a full
tuple 7 to the table at RID ¢, thereby incrementing the RIDs
of existing tuples at RIDs ¢ - - - N by one. A TABLE.delete(z)
deletes the full tuple at RID ¢ from the table thereby decre-
menting the RIDs of existing tuples at RIDs i+ 1--- N by
one. A TABLE.modify(i, j,v) changes attribute j of an ex-
isting tuple at RID i to value v. Transactions may consist
of a BATCH of multiple updates.

Differential Structures. We focus on the situations where
positional updates happen truly scattered over the table.
Note that in ordered table storage, even append-only ware-
house update workloads drive column-stores into worst-case



territory if an in-place update strategy would be used, cre-
ating an avalanche of random writes, one for each affected
row and column (modifies and deletes behave similarly). For
this reason, and as argued previously, column-stores must
use some differential structure DIFF, that buffers updates
that have not yet been propagated to a stable table image.?
As a consequence, all queries must not just scan stable ta-
ble data from disk, but also apply the updates in DIFF as
tuples are produced, using a Merge operator.

Checkpointing. Differential updates need to be eventu-
ally propagated to the stable storage to reduce the memory
consumption and merging cost. While many strategies for
this process can be envisioned, the simplest one is to de-
tect a moment when the size of DIFF starts to exceed some
threshold and to create a new image of the table with all
updates that happened before applied. When this is ready,
query processing switches over to this new image with the
applied updates pruned from DIFF.

Stacking. Previous work on differential structures, e.g. dif-
ferential files [20] and the Log-Structured Merge Tree [16]
suggests stacking differential structures on top of each other,
typically with the smallest structure on top, increasing in
size towards the bottom. One reason to create such a multi-
layer structure is to represent multiple different database
snapshots, while sharing the bulk of the data structures (the
biggest, lowest layers of the stack). Another reason is to
limit the size of the topmost structure, which is the one be-
ing modified by updates, thus providing a more localized
update access pattern, e.g. allowing to store different lay-
ers of the stack on different levels of the memory hierarchy
(CPU caches, RAM, Flash, Disk). Each structure DIFF%
in the stack contains updates from a time range [t1,t2):

TABLE;, = TABLE;, .Merge(DIFF}}) (1)

If one keeps not one, but a stack of DIFFs (most recent on
top), we can see the current image of a relational table as the
result of merging the DIFFs in the stack one-by-one bottom-
up with the initial TABLEy. Here, TABLE( represents the
“stable table”, i.e. the initial state of a table on disk when
instantiated (empty), bulk-loaded, or checkpointed.

DEFINITION 1. Two differential structures are aligned if
the table state they are based on is equal:
Aligned(DIFF;* ,DIFF{®) < to = t.

DEFINITION 2. Two differential structures are consecu-
tive if the time where the first difference ends equals the
time the second difference starts:
C’onsecutive(D[FFﬁ:,DIFFﬁZ) Sty = te

DEFINITION 3. Two differential structures are overlap-
ping if their time intervals overlap:
Overlappmg(DlFFig,DIFFE;) Sty <tg <ty Vic <ty <ty

The time t rather than absolute time identifies the mo-
ment a transaction started, and could be represented by a
monotonically increasing logical number, such as a Log Se-
quence Number (LSN). If a query that started at ¢ works
with just a single DIFF? structure, we shorten our notation
to DIFF;.

2 Just like row-stores, at each commit column-stores need to write
information in a Write-Ahead-Log (WAL), but that causes only
sequential I/O, and does not limit throughput.

R IEETIEEE RID INSERT INTO inventory
0[London [chair{ N [30]0 VALUES ('Berlin’,'table’,"Y’,10)
1|London|stool| N [10]|1 INSERT INTO inventory
2 |London |table| N |20 |2 VALUES ('Berlin’,’cloth’,"Y",5)
3| Paris {rug | N [ 13 INSERT INTO inventory
4| Paris |stool| N | 5 |4 VALUES ('Berlin’,’chair’,’Y",20)

Figure 1: TABLE, Figure 2: BATCH;
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Figure 3: PDT; Figure 4: VALS;

RID vs. SID. We define stable-id SID(T), to be the po-
sition of a tuple 7 within the TABLEy. (i.e. the “stable”
table on disk) starting the tuple numbering at 0, and define
the row-id RID(7T)+, to be the position of 7 at time ¢; thus
SID(7) = RID(7)o. SID(7) never changes throughout the
lifetime of tuple 7 (except for checkpoints). We actually de-
fine SID(7) to also have a value for newly inserted tuples 7:
they receive a SID such that it is larger than the SID of all
preceding stable tuples (if any) and equal to the first follow-
ing stable tuple (if any). Conversely, we also define a RID
value for a stable tuple that was deleted (“ghost tuples”) to
be one more than the RID of the preceding non-ghost tuple
(if any) and equal to the first following non-ghost tuple (if
any).

If the tuple 7 is clear from the context, we abbreviate
SID(7) to just SID (similar for RID), and if the time ¢ is
clear from the context (e.g. the start time of the current
transaction) we can also write just RID instead of RID;. In
general, considering the stacking of PDTs and thus having
the state of the table represented at multiple points in time,
we define A as the RID difference between two time-points:

Ail(T) =RID(7)¢, — RID(7)s, (2)
which in the common case when we have one PDT on top
of the stable table (t1 = 0) is RID minus SID:?

A¢(r) =RID(T): — SID(T) (3)
If we define the SK-based Table time-wise difference as:
MINUS{! = {T€TABLE,,: AYETABLE,,: 7.SK=7.SK} (4)

then we can compute A as the number of inserts minus the
number of deletes before 7:

Ay (1) = [{y € MINUS; : RID(7)s, < RID(7)e, }| —
[{y € MINUS!!. : SID(y) < SID(7)}| (5)

2.1 PDT by Example

We introduce the Positional Delta Tree (PDT) using a
running example of a data warehouse table inventory, with
sort key (store,prod), shown in Figure 1. This TABLE, is
already populated with tuples, using an initial bulk load,
and persistently stored on disk. Initially its RIDs are iden-
tical to the SIDs. Note that RIDs and SIDs are conceptual
sequence numbers; they are not stored anywhere.

3When the context PDT:1 is clear, we sometimes slightly impre-
cisely refer to RID¢; as SID and RIDy, simply as RID, even in
case of a stacked PDT (¢1 > 0).



ng UPDATE inventory SET qty=1 - prod ”‘3"" qt.y

WHERE store='Berlin’ and prod="cloth’
UPDATE inventory SET qty=9

WHERE store="London’ and prod='stool’
DELETE FROM inventory

WHERE store='Berlin’ and prod="table’

INSERT INTO inventory
VALUES ('Paris’,'rack’,"Y’,4)

INSERT INTO inventory
VALUES ('London’,'rack’,"Y’,4)

INSERT INTO inventory

DELETE FROM inventory
WHERE store='Paris’ and prod="rug’

N TWN

Figure 5: TABLE;

Figure 6: BATCH,

[B8) store prod new gty

delta[2] i1 |Berlin|cloth| Y | 1

i2 | Berlin | chair

SID[0 0 SID[T T3 de'
type |[ins [ins type | gty [del do
value [ 72 | &1 value | qo [ do new W qty q}y

qo
Figure 8: VALS:

Figure 7: PDT>

Inserts. We now execute the insert statements from Fig-
ure 2 and observe the effects to the PDT structure in Fig-
ures 3 and 4. Because the inventory table is kept sorted on
(store,prod), the new Berlin tuples get inserted at the begin-
ning. Rather than touching the stable table, the updates are
recorded in a PDT shown in Figure 3, which is a B+ tree
like structure that holds its data in the leaves.* The non-leaf
nodes of the PDT (here only the root node) contain a SID as
separator key, and a delta (explained below) that allows to
compute the RID<SID mapping, because after the inserts
these will no longer be identical. The separator SID in the
inner nodes is the minimum SID of the right subtree. Fig-
ure 3 shows that the inserts all get the same SID 0, which is
thus not unique in the PDT. Among them, the left-to-right
leaf order in the PDT determines their order in the final
results, which is displayed in Figure 5.

Value Space. The leaf nodes of the PDT store the SID
where the update applies, as well as the type of update,
as well as a reference (or pointer) to the new tuple values.
Because the type of information to store for the various up-
dates types (delete,insert,modify) differs, these are stored in
separate “value tables”. In terms of our notation, we have:

DIFF = ( PDT,VALS ) (6)
VALS = ( ins<coly,--- ,col,>,del<SK>,
coly<col;>,- -, colp<colp> ) (7)

Thus, each PDT has an associated “value space” that con-
tains multiple value tables: one insert-table with new tuples,
one delete-table with deleted key values, and for each column
a single-column modify-table with the modified values. The
value space resulting from the insert statements in Figure 4
has all tables empty except the insert table.

Delete. Moving to Figures 5-8 we show the effects of delete
and modify statements. Deletions produce a leaf node with
the “del” type and a reference to a table in the value space
that contains the sort key values of the deleted stable “ghost”
tuples (do refers to (Paris,rug) in Figure 8). We still dis-
play tuples deleted from TABLE but greyed out (that is,
(Paris,rug)); as these are not visible anymore to queries.
Note that the other deleted tuple, (Berlin,table), is not stable
(i.e. in TABLE) therefore really disappeared. The reason

4The tree fan-out is 2 for presentation purposes. Given its use as
a cache/memory-resident data structure, node sizes should be a
few cache lines long, e.g. a fan-out of 8 or 16.

VALUES ('Berlin’,'rack’,"Y’,4)

UL W~ O

Figure 9: TABLE:

Figure 10: BATCHj3;

SID SID
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Figure 11: PDT3 with annotated A,RID=SID+HA
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Figure 13: TABLE;

we keep track of ghost tuples, is that the SIDs of newly in-
serted tuples, always respect the original SK order of the
stable table, as explained later (“Respecting Deletes”).

Modify. The type field of modify leaves contains a reference
to the modified column. In the value space, each column has
a separate single-column table that holds modified values.
In our PDTs, we indicate modifications using the column
name in italics (gty). Thus, the first value of the right leaf
states that stable tuple SID=1 (i.e. (London,stool,N,10))
had its qty column set to 9, per the go reference to the gty
modification table in the value space of Figure 8. Note that
the key surrogates of the value space tables e.g. i1,do,qo
are not drawn as part of those tables, as simple numerical
offsets can be used to save memory in the value space.

Handling of modify and delete is different if the updated
data already resides in the PDT; it can then be changed
there directly. That is, a deletion of an inserted tuple re-
moves all traces of it from the PDT. One may observe this
in case of the the ip insert of (Berlintable,Y,10). In case
column values of a stable tuple have modify entries in the
PDT, all these are removed and get replaced by a single
deletion entry (not in this example). Finally, a modification
of a value that was already modified or inserted, changes
the value stored in PDT. In our example, this happened in
case of the i, insert of (Berlin,cloth,Y,5), which got its qty
changed into 1 in Figure 8.

Finally note that when modifying the SK columns of a
tuple 7, this is handled as a deletion of 7 followed by an
insert of the updated tuple.



RID < SID. Figures 9-12 show the effect of three addi-
tional inserts, producing a final table state of Figure 13. Of
course, what is stored on disk is still TABLE shown in Fig-
ure 1. At this stage, the PDT has grown to a tree of three
levels. To illustrate the way RIDs are mapped into SIDs,
the PDT3 in Figure 11 is annotated with the running A,
as well as with the RID. Note that A, which is the num-
ber of inserts minus the number of deletes so far, as defined
in equation(5), takes into account the effect of all preceding
updates, hence it is still zero at the leftmost insert. For the
inner nodes, the annotated value is the separator value; the
lowest RID of the right subtree. The PDT maintains the
delta field in the inner nodes, which is the contribution to A
of all updates in the subtree below it. Note that this number
can be negative, as in Figure 7. It is thus easy to see that by
summing the respective delta values on a root-to-leaf path,
we obtain the A value for the first update entry in that leaf.
By counting inserts and deletes from left-to-right in the leaf,
we can compute A, and thus RID, for any leaf value. Since
lookup as well as updates to the PDT only involve the nodes
on a root-to-leaf path, cost is logarithmic in PDT size.

Respecting Deletes. One of the subtleties in the PDT

structure is the interaction between deletions of stable tu-

ples (that become “ghost” tuples) and subsequent insertions

of new tuples. We see this interaction in the SID=3 that

the newly inserted (Paris,rack) received; its place in the ta-

ble is exactly before a deleted tuple (Paris,rug). If we would

not consider ghost tuples, the new tuple could have received

SID=4, as that is the first subsequent valid stable tuple. We

chose to respect the order of ghost tuples, mainly to reduce

index maintenance cost; because its effect is that any SK

< SID mapping (index) created on TABLE( remains valid

in future versions of the table. Analytical database sys-

tems use a variety of sparse indexing techniques (e.g. Zone

Maps [11], Knowledge Grid [21] and Small Materialized Ag-

gregates [14]) to exploit exact and non-exact clustering in

data, allowing table scans to skip large tuple ranges that

cannot contain valid answers.

The table to the right is a classical and store prod SID
simple variant of such, namely a sparse
index, created on TABLE(, that tells

that all tuples with SK <(London,stool) Sparse Index
can be found in SID<1, all tuples with SK <(Paris,rug) have
SID<3, and SID> 3 holds for the rest. When handling a
query with range-predicate on SK, the sparse index can be
used to obtain a SID range (or potentially multiple SID-
ranges) to pass on to a table scan. The table scan will fetch
blocks for these SID ranges in order, for all needed columns,
and additionally merge in differences using the PDT. Con-
sider the following query, posed against TABLEs:

SELECT qty FROM inventory
WHERE store = ’Paris’ and prod < ’rug’

it will obtain from the sparse index a SID range (1,3]
to restrict the scan with. Respecting ghost tuples makes
sure the qualifying (Paris,rack) tuple is in range, whereas
disregarding it (SID=4) would cause problems. If ghosts
were disregarded, one could avoid storing key values in the
delete-table, but sparse indices would have to be kept up-
to-date. The ghost-respecting semantics we use here, allows
sparse indices to be kept “stale”, without update overhead.

VDTs. Other column-stores that use differential update
processing, such as MonetDB [2] use a simpler “value-based”

approach, that consists of an insert table that contains all
columns and holds all inserted and modified tuples, and a
deletion table, that only holds the sort key values of deleted
or modified tuples.

This is illustrated to the right
with the insertion table on top, and
the deletion table at the bottom.
Both tables are kept organized in
sort key order, to facilitate merg-

ing these delta tables with the sta-
ble table. Therefore, it is natu- store  prod
ral to implement such tables as B-
. ondon | stool

trees, hence we call this approach -
the Value-based Delta Tree (VDT). VDT: ins+del table
A VDT based DBMS should replace each table (range) scan
of our example inventory table by:

SELECT * FROM ins

UNION (SELECT * FROM inventory WHERE NOT EXISTS

(SELECT * FROM del

WHERE inventory.store = del.store AND

inventory.prod = del.prod))

while the above seems intimidating, the fact that all three
tables are kept organized in the order of the sort key, allows
to execute this on the physical relational algebra level as an
(efficient) linear merge-union and -difference:
MergeUnion[store,prod] (Scan(ins),

MergeDiff [store,prod] (Scan(inventory) ,Scan(del)))

Merging: PDT vs VDT. The main advantage of the PDT
over the VDT approach is that merging in of updates in-
volves Merge-Union/-Diff comparisons on the sort keys (here
(store,prod)), which is (i) computationally intensive and (%)
forces the database system to read those sort keys off disk for
every query, even in cases where the query does not involve
these keys. The positional-only merging that PDT's offer, on
the other hand, avoids reading key columns in these cases,
an important advantage in a column-store.

Some systems (e.g. Vertica) employ optimizations im-
proving the performance of value-based delta structures. For
example, it is often possible to perform (parts of) a query
on the stable and delta data separately, and only combine
the results at the end. Also, deletions can be handled by us-
ing a boolean column marking the “alive” status of a given
tuple, stored in RAM using some updatable variant of the
compressed bitmap index (a non-trivial data structure, see
e.g. [5]). However, in cases where the order of tables needs
to be maintained, e.g. for queries using merge joins, these
solutions still need a CPU-intense key-based MergeUnion, and
require scanning of all keys in the queries. As such, we ex-
clude these techniques from our evaluation.

3. PDT ALGORITHMS

In this section, we first provide basic PDT algorithms
(merge,updates). Subsequently we discuss how PDTs can
be a basic building block in transaction processing and pro-
vide two pivotal PDT algorithms for this. The Propagate
algorithm combines two consecutive PDTs in a single one,
and the Serialize algorithm makes two overlapping PDTs
consecutive. The latter task may be impossible, precisely
under the circumstances where two concurrent transactions
are conflicting, hence one should be aborted. Hence, we
show the tight interaction, even synergy, of positional dif-
ference management and transaction management, both in
terms of isolation as well as conflict detection.



Algorithm 1 PDT.FindLeafByRid(rid)
PDT.FindLeftLeafByRid(rid)
PDT.FindLeafByRidSid(rid, sid)
PDT.FindLeafBySid(sid)

Finds the rightmost leaf which updates a given rid. Versions that

find the leftmost leaf, or search by sid or (sid, rid) are omitted

1: node = this;§ =0

2: while is_leaf(node) = false do

3:  for ¢ = 0 to node_count(node) do
4 & = 0 + node.deltali]

5 if rid < node.sids[i] + § then
6: 6 = § — node.deltali]

7 break from inner loop

8

9

node = node.child][i]
return (node,§)

3.1 Basics
A memory efficient PDT implementation in C is as follows:

typedef struct { uint64 16:n, 48:v } upd_t;

#define INS 65535

#define DEL 65534

#define PDT_MAGIC OxFFFFFFFFFFFF

#define is_leaf(n) ((n).sid[0] != PDT_MAGIC)

#define type(x) update[x].n /* INS, DEL or ..*/

#define col_no(x) wupdate[x].n /* column number */

#define value(x) wupdate[x].v /* valspace offset */

#define F 8

typedef struct {
uint64 sid[F];
sint64 deltal[F];
void* child[F];

} PDT_intern;

typedef struct {
uint64 sid[F];
upd_t update[F];
} PDT_leaf;

This implementation minimizes the leaf memory size, which
is important because there will be finite memory for buffer-
ing PDT data, thus the PDT memory footprint determines
the maximum update throughput that can be sustained in
the time window it takes to perform a checkpoint (that al-
lows to free up memory). The leaf of a PDT consists of a SID
(large integer), the update type field, and a value reference
field. The update type has a distinct value for INS;DEL and
for each column in the table (for modifies), hence an ultra-
wide 65534 column table fits two bytes. The offset reference
stored in value should fit 6 bytes, hence the PDT storage
consumption per modification is 16 bytes.

The fan-out F=8 is chosen here such that leaf nodes are
128 bytes wide, hence aligned with (typically) two CPU
cache lines. The child pointer in the internal node can either
point to another internal node or a leaf, hence its anonymous
type. Since internal nodes need only F-1 SIDs, we can fill
the first SID value of internal nodes with a special code that
distinguishes them from leaves.

The PDT is a B4+-tree like tree that holds two non-unique
monotonically increasing keys SID and RID.

THEOREM 1. (SID, RID) is a unique key of a table.

PROOF. We prove by contradiction. Assume we have
two tuples with equal SID. The first of these is always a
newly inserted tuple, which increments 6 by one. Given
that RID = SID+9, the second tuple cannot have an equal
RID. Next, assume we have two tuples with equal RID. The
first of these is always a deleted tuple, which decrements §
by one. The second tuple can never have an equal SID, as
SID=RID-46. O

COROLLARY 2. If updates within a PDT are ordered on
(SID, RID), they are also ordered on SID and on RID.

Algorithm 2 Merge.next()

The Merge operator has as state the variables pos, rid, skip, and
DIFF and Scan; resp. a PDT and an input operator. Its next()
method returns the next tuple resulting from a merge between
Scan and a left-to-right traversal of the leaves of DIFF. pos,rid
are initialized to 0, leaf to the leftmost leaf of DIFF and skip=
leaf.sid[0] (if DIFF is empty, skip = o0o). Note the new rid is
attached to each returned tuple.

1: newrid = rid
crid = rid + 1
: while skip > 0 or leaf.type[pos] =DEL do
tuple =Scan.next()
if skip > 0 then
skip = skip — 1
return (tuple, newrid)
// delete: do not return the current tuple
8: (pos,leaf) =DIFF.NextLeafEntry(pos, leaf)
9:  skip = leaf.sid[pos] — tuple[sid]
10: if leaf.type[pos] =INS then
11:  tuple = leaf.value[pos]
12:  (pos,leaf) =DIFF.NextLeafEntry(pos, leaf)
13: else
14:  tuple =Scan.next()
15:  while leaf.sid[pos] = tuple.sid do // MODs same tuple

IR o

16: col = leaf.col_no[pos]
17: tuple[col] = lea f.values[pos][col])
18: (pos, leaf) =DIFF.NextLeafEntry(pos, leaf)

19: skip = leaf.sid[pos] — tuple[sid]
20: return (tuple, newrid)

COROLLARY 3. Within a PDT, a chain of N updates with
equal SID is always a sequence of N — 1 inserts, followed by
either another insert, or a modification or deletion of an
underlying stable tuple.

COROLLARY 4. Within a PDT, a chain of N updates with
equal RID is always a sequence of N—1 deletions, followed by
either another deletion, or a modification of the subsequent
underlying stable tuple, or a newly inserted tuple.

Thus, we can search the PDT for exact match on (SID,RID),
and for first-leaf resp. last-leaf on RID and SID alone, using
rather standard tree search, listed in Algorithm 1.

MergeScan. We now move our attention to the MergeScan
operator which merges a basic Scan on a stable table with
the updates in a PDT. Algorithm 2 shows the next() method
one would typically implement in a relational query process-
ing engine for such an operator; the task of this method is
to return the next tuple. The idea here is that skip rep-
resents the distance in position until the next update; un-
til which tuples are just passed through. When an update
(INS,DEL,modify) is reached, action is undertaken to apply
the update in the PDT to the output stream.

The listed algorithm is simplified for a single-level PDT. In
case of multiple layers of stacked PDTs, MergeScan consists
of a Scan followed by multiple Merge operations. Merge can
also be optimized; the version we used in our evaluation was
adapted to use block-oriented pipelined processing [18, 3],
in which each next() method call returns a block of tuples
rather than just one. As the skip value is typically large,
in many cases this allows to pass through entire blocks of
tuples unmodified from the Scan, without copying overhead.

3.2 Update Operations

Adding a new modification or deletion update to a PDT
only requires a RID to be unambiguous, as ghost records



Algorithm 3 PDT.AddlInsert(sid, rid, tuple)
Finds the leaf where updates on (sid, rid) should go. Within that
leaf, we add a new insert triplet at index pos.

1: (leaf,§) = this.FindLeafBySidRid(sid, rid)
2: while leaf.sid[pos] < sid or leaf.sid[pos] + § < rid do
3 if leaf.type[pos] =INS then
4: d=0+1
5
6
7

else if leaf.type[pos] =DEL then
§=46-1
pos = pos + 1
// Insert update triplet in leaf

8: this.ShiftLeafEntries(leaf, pos, 1)

9: leaf.type[pos] =INS
10: leaf.sid[pos| = rid — &
11: of fset = this.AddTolnsertSpace(tuple)
12: leaf.value[pos] = of fset
13: this.AddNodeDeltas(leaf, 1)

— which may share RIDs with a succeeding tuple — cannot
be targets for deletion or modification. We only need to
make sure that the new update goes to the end of an update
chain that shares the same RID. If the final update of such
a chain is an existing insert or modify, we need to either
modify or delete that update in-place, within the PDT. The
functions for adding a new modification or deletion update
to a PDT are outlined in Algorithms 4 and 5, respectively.
B-tree specific details, like splitting full leaves and jumping
from one leaf to its successor, are left out for brevity. The
omitted function AddNodeDeltas(leaf, val) adds a (possibly
negative) value val to all delta fields of the inner nodes on
the path from the root to leaf.

Algorithm 4 PDT.AddModify(rid, col_no, new_value)
Finds the rightmost leaf containing updates on a given rid, adding
a new modification triplet at index pos, or modify in-place.

: (leaf, ) = this.FindLeafByRid(rid)
. (pos, d) = this.SearchLeafForRid(leaf, rid, §)
: while leaf.sid[pos] + 6 = rid and leaf.type[pos] =DEL do
pos=pos+ 1;6 =96 —1
. if leaf.sid[pos] + § = rid then // In-place update
if leaf.type[pos] =INS then
of fset = this.ModifyInsertSpace(pos, col_no, new_value)
else

_
e

leaf.value[pos] = new_value
: else // add new update triplet to leaf

=
—

12:  this.ShiftLeafEntries(leaf, pos, 1)

13:  leaf.col_no[pos] =col_-no

14:  leaf.sid[pos] = rid — §

15:  of fset = this.AddToModifySpace(pos, col_no, new_value)
16:  leaf.value[pos] = of fset

One question is how RID and SID values are obtained.
Deletion and modification SQL requests identify the to-be-
updated tuples using a query. In this query, a MergeScan
generates tuples by merging the stable table with the PDT,
which results in the RIDs we want.

For inserts, we need (SID,RID) to insert a tuple with
SK=sk in the right position of the PDT using Algorithm
3. That is, we need to find the tuple before which the insert
should take place (if any). It can be found with a query that
computes the minimum RID whose tuple has a larger SK:

SELECT rid FROM inventory

WHERE SK > sk ORDER BY rid LIMIT 1

This query could profit in the table-scan from the order
on SK, exploiting e.g. a sparse index, as mentioned in “Re-
specting Deletes”, and recognising rids are ordered, scan

of fset = this.ModifyModifySpace(pos, col_no, new_value)

Algorithm 5 PDT.AddDelete(rid, SK —values)
Finds the rightmost leaf containing updates on a given rid.
Within that leaf, we either add a new deletion triplet at pos,
or delete in-place.

1: (leaf, ) = this.FindLeafByRid(rid)

2: (pos,d) = this.SearchLeafForRid(leaf, rid, )

3: while leaf.sid[pos] + § = rid and leaf.type[pos] =DEL do

4: pos=pos+1;6=6—1

5: if leaf.sid[pos] + 6 = rid then // In-place update

6.

7

8

if leaf.type[pos] =INS then // Delete existing insert
this.ShiftLeafEntries(leaf, pos, —1)
this.AddNodeDeltas(leaf, —1)
9: return

10: else // add new update triplet to leaf

11:  this.ShiftLeafEntries(leaf, pos, 1)

12:  leaf.sid[pos| = rid — §

13: leaf.type[pos] =DEL

14: of fset = this.AddToDeleteSpace(S K _values)

15: leaf.value[pos] = of fset

16: this.AddNodeDeltas(leaf, —1)

Algorithm 6 PDT.SKRidToSid(tuple[SK],rid)
This routine takes a partial tuple of sort key attribute values
together with the RID of the tuple, and returns the SID within
the underlying stable image where the tuple should go. This
procedure is needed when we propagate inserts from a higher
level PDT to this PDT, as we need to locate the inserts’ exact
position with respect to deleted stable tuples.

1: (leaf,d) = this.FindLeafByRid(rid)

2: (pos,§) = this.SearchLeafForRid(leaf, rid, §)

3: while leaf.sid[pos] + § = rid and leaf.type[pos] =DEL and

tuple[SK] > this.getDelValue(lea f.value[pos]) do

4: pos=pos+1;6=6—1

5: sid = rid — &

6: return (sid)

only until the first qualifying tuple. From the obtained RID,
we then need to search the PDT using the SK values to iden-
tify the SID, using Algorithm 6. The SK values are needed
to un-tie multiple inserts at the same SID.

3.3 Transactions

Stacked PDTs can be used as a building block in transac-
tions as depicted in Figure 14. The goal here is to provide
snapshot isolation, where each new query gets a private iso-
lated snapshot of a table by fully copying a PDT. While
database systems that offer snapshot isolation as the high-
est consistency level (e.g. Oracle) are very popular, they
still fail to provide full serializability. However, recent re-
search [4] shows that it is possible to guarantee full serializ-
ability in a snapshot-based system using extra bookkeeping
of read tuples.

To keep the full copying of a PDT efficient, the size of
such a PDT must be small, typically smaller than the CPU
cache size. This small, top-most, PDT is the only PDT
being modified by committing transactions, and we call it
the “Write-PDT”. Actually, copying is not always required,
because if no commits happened between two starting trans-
actions, the new transactions can share the same copy of the
Write-PDT with its predecessor. When a transaction com-
mits, it inserts its updates in the original Write PDT (not its
private copy!). As concurrent read-queries only read their
private copies, they are isolated from these commits.

Propagate. Algorithm 7 lists the Propagate operator that
adds to PDT R holding updates from [to, t1), all updates of
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a consecutive PDT W of time range [t1,t2):
Rig — Ri?.Propagate(W%) (8)

with TABLEo.Merge(R;J)=TABLE.Merge(R;?).Merge(W,}).

This operation is used periodically, when the size of the
Write-PDT grows too large, to migrate all its contents to
a lower-layer “Read-PDT”. Architecturally, the idea is that
the Write-PDT is CPU cache resident, while the Read-PDT
is RAM resident, with the stable table being disk resident.
The Propagate algorithm takes all updates in a higher-layer
PDT p in left-to-right leaf order and applies them to the
current PDT. Observing that the SIDs of one layer are the
RIDs of the layer below, Propagate converts RIDs to SIDs
while performing its job.

Finally, in order to support multi-query transactions, it
should be possible for subsequent queries in the same trans-
action to see the effects of a previous update in that still
uncommitted transaction. This can be supported by adding
on top a third layer of PDTs, namely the “Trans-PDT”. This
Trans-PDT is private to a transaction and initially empty.
The effects of any updates in the transaction are added only
to the Trans-PDT.5 In all, the table image a transaction that
started at time ¢ sees, is based on the stable table, modified
by updates until r in the (typically RAM resident) Read-
PDT R, and updates until w in the (typically CPU cache
resident) Write-PDT W, with updates the transaction itself
carried out stored in the Trans-PDT T

TABLE; = TABLEq.Merge(R?).Merge(W, ). Merge(T;)  (9)

When the transaction commits, it should propagate the
changes from the Trans-PDT to the master Write-PDT.
However, we cannot blindly use Algorithm 7, because con-
current transactions may have committed, hence the time
ranges represented by the master Write-PDT may overlap
with the Trans-PDT of the committing transaction.

Overlapping Transactions. At the start of a transac-
tion x at time to, a copy of the Write-PDT W' is made
named Wz', and an empty Trans-PDT Tz' is created.
Until x commits at t2, updates are added to the Trans-
PDT denoted at commit time Tx’ég If no transaction com-
mitted in the meantime, we may just use Algorithm 7 to
propagate the updates directly to the master Write-PDT:
Wi, = Wto.Propagate(Tx,fg) to get a database state at time

5A fourth level “Query-PDT” can be used in certain queries,
to protect them from seeing their own changes. When such a
query finishes, its Query-PDT is propagated to its Trans-PDT
and removed.

Algorithm 7 PDT.Propagate(W)
Propagates the updates present in argument PDT W to this PDT
R. It assumes that W is consecutive to R.

1: leaf = W .FindLeafBySid(0)

2: pos=0=0

3: while leaf do // Iterate over input updates

4:  rid = leaf.sid[pos] + ¢
5:  if leaf.type[pos] =INS then // Insert
6: sid =SKRidToSid(leaf.values[pos|[SK],rid)
7 R.AddInsert(sid, rid, leaf.values[pos])
8: d=0+1
9:  else if leaf.type[pos]| =DEL then // Delete
10: R.AddDelete(rid, lea f.values[pos|[SK])
11: 6=6—-1
12:  else // Modify
13: R.AddModify(rid, col _no, lea f.values|pos][col_no])

14:  (pos,leaf) = W .NextLeafEntry(pos, leaf)

to that reflects . However, if a transaction y committed at
t1, where to < t1 < t2: we need to do two things:

(1) In snapshot isolation, a conflict occurs if the write-set of
the transactions overlaps, so we must check for updates in
Trans-PDTs Tz and Ty that modify the same tuple.

(2) If no conflicts exist, we need to propagate the changes
from Tz into the current master Write-PDT Wy, .

To perform (1), the updates in Tz and Ty should be
aligned, i.e. relative to the same database snapshot (match-
ing SID domains). To perform (2), updates in T'z should be
consecutive with respect to the updates in Ty, i.e. relative
to the database snapshot as produced by merging updates
committed by Ty (SID domain of Tx matches RID domain
of T'y). Assuming for now that x and y are the only concur-
rent transactions, they are guaranteed to have started using
equal write-PDT snapshots (i.e. no other transaction can
have committed in the meantime). This makes Tz and Ty
aligned. We can now check for conflicting updates in 7'z and
Ty by analyzing the update SIDs in both PDTs (in ordered
and synchronized fashion). While we are checking for con-
flicts, we can also convert the SIDs of the updates in Tz (the
committing transaction) so that they become relative to the
RID domain as produced by transaction y, thereby serializ-
ing « and y. If Ty is a PDTYY, serializing means that we are
transforming PDT Tz!3 into a PDT T'zi}, which allows us
to perform (2).

Serialize. Algorithm 8 lists the Serialize() routine that per-
forms this transformation, but also raises an error (returns
false) if there are conflicting updates that make the trans-
position illegal. In case of such a conflict, the committing
transaction must be aborted. Note that the conflict checking
performed is write-write on the tuple-level and even allows
to reconcile modifications of different attributes of the same
tuple (by the omitted CheckModConflict() routine).

T’xg — Ta?ig.Serialize(Tyff) (10)
Commit. Until now we only considered two concurrent

transactions, but Algorithm 9 extends the idea to an arbi-
trary number of concurrent transactions.
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Figure 15: Three Concurrent Transactions



Algorithm 8 PDT.Serialize(Ty)

This method is invoked on PDT Tz with an aligned Ty as
input, and checks the updates in Tz (the newer PDT) for
conflicts with an earlier committed transaction Ty. FALSE
is returned if there was a conflict. Its effect on Tz (referred
to as T'r) is to become consecutive to Ty, as its SIDs get
converted to the RID domain of T'y.

1: dmazx = Txz.count(); jmazx = Ty.count()

2 i=j=686=0
3: while ¢ < imax do // Iterate over new updates
4:  while j < jmaz and Ty[j].sid < Tz[i].sid do
5: if Ty[j].type = INS then
6: d=450+1
7 else if Ty[j].type = DEL then
8: 6=6—-1
0 j=j+1
10:  if Ty[j].sid = Tx[i].sid then // potential conflict
11: if Ty[j].type =INS and Tz[i].type =INS then
12: if Ty[j].value < Tz[i].value then
13: d=0+1Lj=37+1
14: else if Ty[j].value = Tz[i].value then
15: return false// key conflict
16: else
17: Tx[i).sid = Tx[i].sid+ 6
18: t=14+1
19: else if T'y[j].type =DEL then
20: if Tz[i].type ZINS then
21: return false
22: else // Never conflict with Insert
23: Tx[i).sid = Tx[i].sid+ 6
24: §=0—1lii=i+1
25: else // Modify in Ty
26: if Tx[i].type =INS then
27: Tx[i].sid = Tz[i].sid + §
28: i=1+1
29: else if Tz[i].type =DEL then // DEL-MOD conflict
30: return false
31: else if CheckModConflict() then // MOD-MOD
32: return false
33:  else // Current SID in Ty is bigger than in Tx
34: Tz[i].sid = Tx[i].sid + 6 // Only convert SID
35: i =1+1

36: return true

For each recently committed transaction z; that overlaps
with a still running transaction = we keep their serialized
Trans-PDTs T"z; alive in the set T'Z. A reference counting
mechanism ensures that T"z;-s are removed from T'Z as soon
as the last overlapping transaction finishes. Basically, all
T’z; are consecutive and hold the changes that the transac-
tion z; applied to the previous database state. The creation
of such a T"; is in fact a by-product of the fact that z; com-
mitted. Like described in the two-transaction case, commit-
ting entails using the Serialize algorithm to transform the
Trans-PDT Tz of the committing transaction possibly mul-
tiple times; once for each overlapping transaction z;, € TZ
in commit order. The execution of Serialize both serves the
purpose of checking for a write-write conflict (which leads to
an abort of z), as well as produces a serialized Trans-PDT
T’z that is consecutive to the database state at commit time,
hence can be included in T'Z and also used to Propagate its
updates to the master Write-PDT (i.e. commit).

Example. The example in Figure 15 shows concurrent exe-
cution times of three transactions: a,b, and c. At start time
t1, we start out with an initial master Write-PDT W;, = 0.
At t14, the first transaction, a, arrives and takes a snapshot

Algorithm 9 Finish(ok, W, ,Tz", TZ2)
Commit(w, tx, tz) = Finish(true,w, tx,tz)
Abort(w, tz,tz) = Finish(false,w, tz,tz)
Transaction x that started at ¢, tries to commit its Trans-
PDT Tz' into master Write-PDT W, , taking into account
the sequence of relevant previously committed consecutive
PDTs TZ = (T'21,,-- ,T/anZ’l). If there are conflicts
between Tz and any T’2i € TZ, the operation fails and
x aborts. Otherwise the final T’z is added to TZ and is
propagated to Wy,,.
1: Tt =Tx;1=0
2: while (: =i+ 1) < n do // iterate over all T
T =T’z

3
4: if t < t; then // overlapping transactions
5: if ok then
6: ok = T'z.Serialize(T)
7 T.refent = T.refent — 1
8: if T.refcnt =0 then // z is last overlap with 2
9: TZ=TZ-T
10: if ok = false then // conflict:  must abort
11: return false
12: Wy, = Wi, .Propagate(T'z)
13: T'z.refent = ||runningtransactions||
14: if T'z.refent > 0 then
150 TZ=TZ+Tx
16: return true// z can commit

of the write-PDT: Wa =Copy(Ws,) = 0. Here, we chose
notation t1, to suggest that the database state at that time
is the same as at t;. Transaction a starts out with an empty
Trans-PDT, Ta''e = (). At ty3, the second transaction, b,
arrives and gets the same snapshot (with empty write-PDT)
Wb = Wa, since no commits took place in the meantime. At
t2, transaction b commits, thereby propagating its changes
from Tbi;” to the current table image. There were no com-
mits during the lifetime of b, so the most up-to-date ta-
ble image is still represented by Wb, allowing us to com-
mit by propagating T'b directly to the master Write-PDT:
Wi, = th.Propagate(Tbi;’). The resulting new master
write-PDT reflects the state as seen by incoming transac-
tion ¢ at tac: Wer,, =Copy(Wi,). Again we start with an
empty Tc'?c = () for transaction c. The next thing that
happens is the commit of transaction a at t3. We serialize
Tai;“ with respect to Tbi;”: T'ag = Taié"’.Serialize(Tb,f;”),
which reports no conflicts. The resulting T'aig is consecu-
tive to Wi,, into which we can now safely commit: Wy, =
Wi, .Propagate(T'ag). Finally, when transaction ¢ commits,
at t4, we still have T'aig around, which is aligned with
Tc'>, so we can do T'c;? = Tc;* Serialize(T'a;?), which
can then be propagated to the master Write-PDT: W;, =
W, Propagate(T'ci?).

In summary, at transaction commit, we check for conflicts
against all transactions that committed during the lifetime
of the transaction. Each such overlapped commit is charac-
terized by its serialized Trans-PDT; we cache these for those
recent transactions that still overlap with a running transac-
tion. By serializing the committing Trans-PDT with these
cached PDTs one-by-one, we finally obtain a Trans-PDT
that is consecutive to the current database state, and can
be Propagate-ed to it (and added to the cache itself). These
Serialize operations will also detect any conflicts, in case of
which the transaction gets aborted instead. Together, this
amounts to optimistic concurrency control.
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Figure 17: MergeScan: Scaling and Key Type
4. EXPERIMENTAL EVALUATION

To evaluate the benefits of the proposed techniques, we
run two sets of benchmarks. First, with micro-benchmarks
we demonstrate the performance of inserting, deleting and
modifying data of varying size using PDTs. We also mea-
sure the performance of MergeScan, using different sort key
data types and update rates. Then, we investigate if PDTs
succeed in providing uncompromising read performance in
large-scale analytical query scenarios, using the queries from
the TPC-H benchmark.

Benchmark setup. For our experiments we used two hard-
ware platforms. The workstation system is a 2.40GHz Intel
Core2 Quad CPU Q6600 machine with 8GB of RAM and 2
hard disks providing a read speed of 150MB/s. The server
system is a 2.8GHz Intel Xeon X5560 machine with 48GB of
RAM and 16 SSD drives providing 3GB/s I/O performance.
The micro-benchmarks were performed on workstation, were
memory-resident and the results are averaged over 10 con-
secutive runs. The standard deviation over these runs is
very small and thus not reported. The TPC-H benchmarks
were performed on both workstation and server.

Update Microbenchmarks. The first set of experiments
demonstrate the logarithmic behavior of PDTs when they
grow due to execution of ever more updates. Figure 16 de-
picts the time needed to perform inserts, deletes and modi-
fies respectively, to a constantly growing PDT (up to 1 mil-
lion operations). Clearly, inserts are more expensive than
modifies and deletes since the keys must be compared to
compute insert SIDs.

MergeScan Microbenchmarks. Figure 17 presents the
results of scanning a table of 4 columns and 1 key column (in-
teger or string) with updates managed by PDTs and VDTs.
The query used is a simple projection of all 4 columns after
a varying number of updates have been applied. In all cases
PDT outperforms VDT by at least a factor 3. Furthermore,
this experiment demonstrates linear scaling of query times
with growing data size for both PDT and VDT.

1M tuples, 6 columns, integer 1M tuples, 6 columns, string
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Figure 18: MergeScan: Single- vs Multi-Column

The benefits of PDT are especially visible when the key
column contains strings. In that case, as the percentage of
updates is increased, value-based merging in VDT's becomes
significantly slower due to expensive string comparisons. On
the other hand, PDTs do not need to perform value com-
parisons, thus their cost is lower and does not increase sig-
nificantly with update ratio.

The next set of experiments investigate the impact of in-
creasing the number of key columns in a table of 6 columns.
Here we expect VDTs to suffer when instead of a single-
column sort key we have multiple sort columns, as the value-
based merge-union and -diff logic becomes significantly more
complex with multi-column keys. As in PDTs MergeScans
do not need to look at the sort key columns, they are not
influenced by this at all. Figure 18 depicts the results for
both integer and string type of keys. The x-axis is di-
vided into 2 dimensions: for each update percentage we con-
duct the experiment with a varying number of keys, from 1
to 4 columns. The query projects the remaining non-key
columns. For VDTs, the query time increases significantly
when the number of keys to be scanned and compared is
increased. For PDTs, query time decreases because fewer
columns have to be projected when the number of keys in-
crease, while merge cost stays constant.

Overall, presented micro-benchmarks demonstrate that
PDTs are significantly more efficient than VDTs, especially
with complex (string, multi-attribute) keys.

TPC-H Benchmarks. Whereas in the micro-benchmarks
we only focused on the PDT operations under controlled
circumstances, we now shift our attention to overall perfor-
mance of analytical queries using the full TPC-H query set
(22 queries). The focus in these experiments is establish-
ing whether PDTs indeed succeed in allowing column-stores
to be updated, without compromising their good read-only
query performance. We compare clean queries (no-updates),
that is, queries to a clean database that only has been bulk-
loaded, to queries to a database that has been updated by
the official 2 TPC-H update streams which update (insert
and delete) roughly 0.1% of two main tables: lineitem and or-
ders. We test both PDTs and VDT's implemented inside the
VectorWise system on both workstation and server systems
described above.

The experiments were conducted for scientific evaluation
only, and do not conform with the rules imposed on an offi-
cial TPC-H benchmark implementation. Therefore, we omit
any overall score, and explicitly note that these individual
query results should not be used to derive TPC-H perfor-
mance metrics.



Plot 1: Nehalem, SF-30, compressed, 'cold’ execution times
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Plot 2: Nehalem, SF-30, compressed, 10 consumption
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Plot 3: Core2, SF-10, non-compressed, 'cold’ execution times
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Plot 4: Core2, SF-10, non-compressed, 'hot’ execution times
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Plot 5: Core2, SF-10, non-compressed, 10 consumption
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TPC-H Queries: left bar - no-updates run, middle bar - VDT-based run, right bar - PDT-based run
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Figure 19: TPC-H: server (compressed SF-30) vs workstation (non-compressed SF-10)

The lineitem table in our setting is ordered on a {I_orderkey,
I_linenumber} key, while the orders table is ordered on a
{o_orderdate, o_orderkey} combination. Due to this ordered
columnar table storage, which is very much like row-wise
“index-organized” table storage (a clustered index), certain
queries can exploit range predicates; however the update
task is non-trivial, as the inserts touch locations scattered
throughout the tables.

On the server, we measured the performance using a com-
pressed SF-30 (30GB) dataset, while on workstation we used
an uncompressed SF-10 (10GB) dataset. The results are
presented in Figure 19 For each of the 3 scenarios a sepa-
rate bar is plotted for every TPC-H query.®

We provide two types of results: (i) I/O volume consumed
and (i1) query performance, separated into data-scanning
(including reading from disk, decompression, and applying
updates, as applicable), and query processing time. All re-
sults are normalized against the VDT runs, with the absolute
numbers provided for those.

The top two segments of Figure 19 present the results on
the server, using a compressed, disk-resident (“cold”) SF-30
dataset. Plot 2 shows that the I/O volume for VDT runs is
consistently higher (or equal) than in no-updates and PDT
runs, due to mandatory scanning of sort key columns in
VDT merging. However, on this platform, the I/O differ-
ence is relatively small, due to good compression ratios for

6Queries 2, 11 and 16 do not touch updated tables, hence the
results for them do not differ between runs.

the (sorted) key columns. Still, the overhead of value-based
merging, visible in Plot 1, can make the “scan” part of-
ten significantly higher for the VDT scenario. PDT runs
demonstrate a very small “scan” overhead over no-updates,
resulting in a negligible impact on the total query time.

The bottom 3 segments of Figure 19 present results on
the workstation, using a non-compressed SF-10 dataset, both
memory- (“hot”) and disk-resident (“cold”). Plot 5 shows
that with non-compressed keys, the I/O volume in the VDT
case is significantly higher, up to a factor 2. This demon-
strates the benefit of PDTs on tables with keys that have
large physical volume (strings; hard to compress; multi-
column). This increase in I/O is directly reflected in the
performance of the “cold” runs (Plot 3). Plot 4 demonstrates
a scenario where lack of compression (which constitutes a
significant part of the “scan” cost in Plot 1), combined with
memory-resident data, makes accessing data a “zero-cost”
operation for the no-updates runs. With the data-access
cost eliminated, Plot 4 demonstrates the absolute CPU cost
of applying the updates to the data stream. Here, the VDT
approach can have a very significant overhead, consuming
up to half of the total processing time (e.g. in query 6).
The CPU cost for PDT merging is significantly lower, and
negligible in most cases.

In all, we can see that value-based merging can be signifi-
cantly slower (>20%) than positional merging as introduced
by PDTs, and PDTs consistently achieve query times very
close to querying a clean database.



5. RELATED WORK

Differential techniques [20] historically lost out to update-
in-place strategies as the method of choice to implement
database updates handling. Gray pointed out (“UPDATE
IN PLACE: A poison apple?”) that differential techniques,
which do not overwrite data, are more fail-safe, but recog-
nized that magnetic disk technology had seduced system
builders into update-in-place by allowing fast partial file
writes [12]. Update-in-place, also implies random disk writes;
where hardware improvement has lagged compared to se-
quential performance. While our paper does not touch the
subject of using differential techniques for row-based sys-
tems, it recognizes differential techniques as the most salient
way to go for column-stores, where update-in-place is addi-
tionally hindered by having to perform I/O for each column,
aggravated by compressed and replicated storage strategies.

The idea to use differential techniques in column-stores
is not new (the idea to do so positionally, is) and was sug-
gested early on [8]. The Fractured Mirrors approach [19]
that combined columnar with row storage, also argued for
it. Both papers did not investigate this in detail. The open-
source columnar MonetDB system uses a differential update
mechanism, outlined in [2]. C-Store proposed to handle up-
dates in a separate write-store (WS), with queries being run
against an immutable read-store (RS), and changes merged
in from the WS on-the-fly. We see our PDT proposal as par-
ticularly suited for columnar stores, because our positional
approach allows queries that do not use all key columns, to
avoid reading them — a crucial advantage in a column-store,
and is also computationally faster.

As for previously proposed differential data structures, the
Log-Structured Merge-Tree (LSMT) [16] consists of mul-
tiple levels of trees, and reduces index maintenance costs
in insert/delete-heavy query workloads. Similarly, [13] pro-
poses multi-level indexing. The goal of improving insertions
using not stacked, but partitioned B-trees was explored in [9].
A possible reason why multi-tree systems so far have not
been very popular, is that lookup requires separate I/Os
for each tree. The assumption in our PDT proposal, and
similarly in the value-based “VDT” (our terminology) ap-
proaches used e.g. in MonetDB, is that only the lowest
layer data structure (columnar storage) is disk-resident and
requires I/0. The availability of 64-bits systems with large
RAM thus plays in its advantage.

Finally, we have shown how PDTs can be used as an
alternative way to provide ACID transactions; an area of
database functionality where ARIES [15] is currently the
most prominent approach. There are commonalities be-
tween ARIES and our proposal, like the use of a WAL and
checkpointing, but the approaches differ. ARIES uses im-
mediate updates, creating dirty pages immediately at com-
mit, rather than buffering differences. Instead of tuple-
based locking and serializability used in ARIES-based sys-
tems, column-stores tend to opt for snapshot isolation, typ-
ically with optimistic concurrency control. PDTs fit this
approach, offering lock-free query evaluation, using three
layers of PDTs (Trans,Write,Read). While snapshot iso-
lation allows anomalies [1], user acceptance for it is high,
and recently it was shown that snapshot-based systems can
provide full serializability [4] with only a limited amount of
bookkeeping. In all, we think that given hardware trends,
and the specific needs of column-stores, PDT-based trans-
action management is a new and attractive alternative.

6. CONCLUSIONS AND FUTURE WORK

We have introduced the Positional Delta Tree (PDT), a
new differential structure that keeps track of updates to
columnar, compressed (read-optimized) data storage. Rather
than organizing the modifications based on a table key (i.e.,
value-based), the PDT keeps differences organized by posi-
tion. The PDT requires reading less columns from disk than
previous value-based differential methods and is also com-
putationally more efficient. We have described algorithms
for ACID transaction management using three PDT layers
(Read,Write, Trans); allowing efficient lock-free query exe-
cution. PDTs can thus be seen as a new and attractive
approach to transaction management in column stores, that
does not compromise its high analytical read performance.

Future work is underway on keeping join indices up-to-
date with PDTs, and using PDTs in information retrieval
systems. Other topics include keeping PDTs in Flash mem-
ory as well as using PDTs for row-stores.
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