
SIGMOD RWE Review

”Efficient Parallel Set-Similarity Joins Using

MapReduce”

Fabian Hueske, TU Berlin

June 3, 2010

1 Setup

This document is a review report on the paper ”Efficient Parallel Set-Similarity
Joins Using MapReduce” by R. Vernica, M. Carey, C. Li by Sigmod’s 2010
Repeatability and Workability Evaluation Committee.
In this section the provided resources (code, data sets, setup information)
and hardware setups of the authors and reviewers are discussed. Detailed in-
formation on all experiments that the reviewer conducted or tried to conduct
for repeatability or workability can be found in sections 2 and 3.

1.1 Provided Resources

The resources provided by the authors were very well prepared. Documen-
tation contained the relevant information to conduct all experiments. The
authors experiments were assembled from a set of several bash and perl
scripts, that orchestrated the full pipeline of the experiments, i.e. format-
ing the distributed file system, uploading original data, generating test data,
running experiments, plotting figures.
Some scripts required minor adaptations to fit the reviewer’s setup. Due to
the documentation and self-explaining nature of the scripts, that was an easy
task.
The full script automation of the experiments tremendously eased the repe-
tition of the experiments.

1

1.2 Comparing Experimental Setups

The experiments of the paper were run on cluster consisting of 10 IBM x3650
worker machines and a coordinator machine. The worker machines had one
Intel Xeon QuadCore E5520 CPU running at 2.26GHz, 12GB RAM and four
300GB hard disks which did not run in RAID mode. The coordinator ma-
chine was not specified in detail. All machines ran Ubuntu Linux 9.04 (64bit,
server edition), Java 1.6 (64bit, server JVM), and Hadoop 0.20.1. The au-
thors configured Hadoop to run 4 map and 4 reduce tasks on each worker.
The JVMs running those tasks had at maximum 2,5GB RAM available. Re-
peated execution of failed tasks and speculative execution were turned off.
The data of a HDFS datanode was spread over all four disks.
The reviewer’s experiments were conducted on a cluster consisting of 5 servers.
Each server was equipped with two AMD Opteron QuadCore CPUs running
at 2.3GHz, 32GB RAM, and four 146GB hard disks (one system disk, three
data disks bundled with RAID0). The machines ran Ubuntu Linux 8.04
LTS (64bit, server edition, updates from 05/27/2010), Java 1.6, and Hadoop
0.20.2. The reviewer aimed to configure Hadoop the same way the authors
did. However, following modifications to the original setup were necessary:

• Jobtracker and Namenode did not run on a dedicated machine for the
experiments conducted with all 5 machines. Experiments with less than
5 machines had a dedicated Jobtracker and Namenode.

• A HDFS datanode’s data was stored on the 3-disk RAID0 device.

• Hadoop’s feature to restart failed tasks was enabled. This was neces-
sary due to occasional not reproducible task failures which caused the
failure of a whole experiment. Exceptions stated that a local directory
was not writable. The reviewer suspects the local file system of being
responsible for those exceptions.

Although the reviewer’s machines seem to be approximately twice as powerful
than the authors machines (number of cores, amount of RAM), the reviewer
was not able to run twice as many map and reduce jobs on each node. Such
attempts failed with exceptions stating lack of available memory. Hence,
the reviewer chose to run the experiments with identical configuration as
the authors with respect to number of map and reduce tasks and amount of
RAM given to task JVMs.

2

5 10 25

Dataset Size (times the original)

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

T
im

e
(s

ec
on

ds
)

1-BTO
2-BK
3-BRJ
2-PK
3-OPRJ

Figure 1: Repeated Fig 8

1.3 Interaction with Authors

The authors were very helpful and responded fast to the reviewers questions.
The reviewer had some issues with the setup of the Hadoop system. The
author’s gave useful advices to solve the problem (e.g., enabling repeated
execution of failed tasks, which solved one main issue with the Hadoop setup).
The reviewer was able to conduct all experiments without interaction with
the authors, due to the complete documentation and excellent setup of scripts
provided by the authors.

2 Repeatability Evaluation

In this section detailed information on the experiments to repeat the result
presented in the paper is given. For each experiment, the reviewer adapted
the provided run script to the hardware setup and executed it. After com-
pletion, the figures and runtime data were included into this report.

2.1 Figure 8 - Performance DBLP

Figure 1 shows the result of the experiments to repeat Figure 8 from the
original paper. The reviewer ran the experiment one 5 machines while the
authors used 10. Besides the absolute runtimes, both figures are almost
identical.

3

2 3 4 5

Nodes

0
200
400
600
800

1000
1200
1400
1600
1800

T
im

e
(s

ec
on

ds
)

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 2: Repeated Fig 9

2.2 Figure 9, 10 & Table 1 - Speedup DBLP

Figure 2 was derived from experiments repeating Figure 9 of the paper. The
original experiments were ran on varying cluster sizes (2,4,8,10 nodes) while
the reviewer used 2, 3, 4, and 5 nodes to repeat the results. Compared to
the original figure, the repeated Figure shows an increased runtime of 25% to
30%. However, the trend of all curves is very similar. The increase of runtime
can be attributed to the difference in the HDFS setup. In the authors setup,
all map tasks have exclusive access to a single disk, while in the reviewers
setup 4 map tasks compete for a 3-disk RAID0.

Figure 2.2 repeats Figure 10 from the original paper. The figures were
generated from the same runtime data as Figure 2 / Figure 9. Both figures
indicate a very similar speed-up behavior.

Table 1 shows the absolute values for the runtimes of the individual algo-
rithms that were observed from the experiments to derive figure 2 and 2.2.
Hence it repeats Table 1 from the original paper. In general, we observe
longer runtimes compared to the original experiments. Both tables show
very similar relative differences for competing algorithms and varying num-
ber of nodes. Looking closer at the algorithms for the first stage, the original
paper indicates a better scaling of the BTO algorithm (starts to outperform
OPTO somewhere between 5 and 8 nodes. In the repeated experiments,
BTO already betters OPTO on a 4-node setup.

4

2 3 4 5

Nodes

1

2

S
pe

ed
up

 =
 O

ld
 T

im
e

/ N
ew

 T
im

e

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 3: Repeated Fig 10

Stage Alg.
No. Nodes

2 3 4 5

1
BTO 254.15 196.12 160.78 144.70
OPTO 241.54 186.18 165.42 150.26

2
BK 1018.02 668.29 501.53 389.17
PK 898.51 583.78 440.40 334.33

3
BRJ 315.35 235.14 190.09 171.52
OPRJ 119.34 98.08 85.43 83.91

Table 1: Repeated Table 1

5

2 3 4 5
Nodes and Dataset Size

(times 3 x original)

0

200

400

600

800

1000

1200

1400

1600

T
im

e
(s

ec
on

ds
)

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 4: Repeated Fig 11

2.3 Figure 11 & Table 2 - Scaleup DBLP

Figure 4 was derived by repeating the experiments for Figure 11 of the
original paper. The setup was adapted to fit the reviewers test environ-
ment. While the authors ran experiments for 2, 4, 8 and 10 nodes, the
reviewer repeated the experiment with 2, 3, 4, and 5 machines. Conse-
quently, the scale factor of the data set was adapted. The reviewer chose an
no.nodes/scalefactor ratio of 3 compared to 2.5 in the original setting to
avoid complications caused by factional scale factors for uneven numbers of
nodes (sf 7.5 for 3, and 12.5 for 5 nodes).
Comparing Figure 4 and Figure 11 of the original paper, we observe longer
runtimes (different HDFS setup and higher no.nodes/scalefactor ratio).
Both figures indicate a similar scale-up behavior of the proposed methods.
Table 2 gives the runtimes of the different algorithms that were observed
during the experiment to derive Figure 4. It corresponds to Table 2 in the
original paper. Of course, absolute numbers vary but the the fundamental
trends such as better scale-up behavior of BRJ compared to OPRJ and BTO
compared to OPTO could be repeated.

2.4 Figure 12 - Performance DBLP+CiteseerX

Figure 5 shows the results of the repeated experiments for Figure 12 from
the original paper. For this experiment, the reviewer used 5 machines, while

6

Stage Alg.
No. Nodes / Dataset Size

2/x6 3/x9 4/x12 5/x15

1
BTO 172.11 171.12 190.19 174.07
OPTO 158.38 173.40 182.13 194.36

2
BK 509.52 560.60 619.59 672.64
PK 478.37 501.47 525.51 548.54

3
BRJ 192.21 197.05 204.45 212.29
OPRJ 73.96 83.02 88.96 105.05

Table 2: Repeated Table 2

5 10 25

Dataset Size (times the original)

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400

T
im

e
(s

ec
on

ds
)

1-BTO
2-BK
3-BRJ
2-PK
3-OPRJ

Figure 5: Repeated Fig 12

the authors used 10. Comparing both figures, two observations can be made.
First, in the reviewers results, the OPRJ phase requires significantly less
time, compared to the BRJ algorithm. Second, the reviewer was able to
successfully run OPRJ even with scale factor 25 which failed in the authors
setup due to lack of available memory. The fact that the reviewer’s machines
had more RAM (32GB compared to 12GB) is a possibly explanation for
both observations. The increased runtime might be attributed to the usage
of swap space in the authors setup.

7

2 3 4 5

Nodes

0

1000

2000

3000

4000

T
im

e
(s

ec
on

ds
)

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 6: Repeated Fig 13

2.5 Figure 13 - Speedup DBLP+CiteseerX

Figure 6 repeats Figure 13 of the original paper. Similar as for Figure 2 the
reviewer ran the experiments on 2 to 5 nodes. The authors used 2, 4, 8,
and 10 nodes. Given the observation from Figure 5, the better performance
of the test runs including the OPRJ algorithm on the reviewers setup can
be explained with the larger amount of available memory. Apart from that,
both figures indicate similar speed-up behaviors.

2.6 Figure 14 - Scaleup DBLP+CiteseerX

Figure 7 shows the results of repeating the experiments for Figure 14 of the
original paper. The reviewer used the same no.nodes/scalefactor ratio as
for Figure 4. The reviewer’s results show a better scaleup behavior for the
test runs that include the OPRJ algorithm, which again can be explained
with the better equipped hardware used in the reviewer’s setup. Another
difference is the the slightly better performance of the BTO-BK-BRJ com-
pared to BTO-PK-BRJ in the reviewers results while Figure 14 of the authors
show that BTO-PK-BRJ outperforms BTO-BK-BRJ. However, both meth-
ods show similar scale-up behavior in both figures.

8

2 3 4 5
Nodes and Dataset Size

(times 3 x original)

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(s

ec
on

ds
)

BTO-BK-BRJ
BTO-PK-BRJ
BTO-PK-OPRJ
Ideal

Figure 7: Repeated Fig 14

3 Workability Evaluation

Workability tests were not performed, due limited time.

4 Conclusion

The reviewer was able to run all experiments on a half-sized hardware setup
compared to the author’s setup. All experimental results have been fully
reproduced. Due to the good documentation and excellently scripted exper-
imental setup, the reviewer’s actions were limited to setup Hadoop, start the
experiments, wait, and collect and inspect the results.
Since, most experiments ran for more than 12 hours and initial problems
with the Hadoop setup, the reviewer was not able to conduct a workability
evaluation.

9

